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Abstract
In this paper, two dynamic models, recently proposed to describe the adaptive repeated
choices of a boundedly rational consumer, are joined together. One considers a consumer
adjusting the consumption level of a given good over time according to the observed discrep-
ancy between expected and realized utility gain and modifies the utility function according
to past consumption experience, also including saturation effects when past consumption is
excessive. The other one considers the same adjustment mechanism with constant prefer-
ences but with a behavioral effect that introduces a tendency (or bias) to imitate a reference
group of consumers. Merging these two models, a two-dimensional nonlinear dynamical
system is obtained which describes consumers that decide their next period consumption of
a given good by following two different (sometimes contrasting) criteria: their own utility
maximization on the one side and imitation of a reference group of consumers on the other
side. This leads to a greater uncertainty with respect to the model without the behavioral
bias. Such uncertainty is studied through a numerical exploration of the long-run dynamics,
guided by some global dynamical features of the nonlinear model, such as the folding action
of the critical curves that characterize the behavior of the iterated noninvertible map and the
singularities related to the presence of a vanishing denominator, namely focal points and
prefocal curves. So, the aim of the paper is twofold: on the one side, it tries to contribute
to the literature on the economic theory of boundedly rational consumers represented by
evolutionary and behavioral approaches; On the other side, it tries to contribute to the recent
literature about the global analysis of discrete dynamical systems characterized by contact
bifurcations leading to the creation of complex topological structures of the attractors and
their basins of attraction.

Keywords Consumer theory · Bounded rationality · Noninvertible maps · Focal points ·
Global bifurcations

B Fabio Tramontana
fabio.tramontana@uniurb.it

Gian Italo Bischi
gian.bischi@uniurb.it

1 Department of Economics, Society, Politics (DESP), University of Urbino (Italy), Via Saffi 42, 61029
Urbino, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-05885-x&domain=pdf
http://orcid.org/0000-0002-7299-5524


892 Annals of Operations Research (2024) 337:891–912

1 Introduction

Consumers, in making their consumption choices, do not only consider their tastes, because
they may also be influenced by a reference level of consumption see e.g. (Thaler, 1985;
Kahneman et al., 1991; Tversky & Kahneman, 1991). For example, people belonging to a
reference group (colleagues,members of the family, friends, and so on) that can be considered
as a reference for the consumer who does not want to behave too differently from them, see
e.g. (Kapteyn et al., 1980; Hayakawa, 2000; Janssen& Jager, 2001; Varela& Pritchard, 2011;
Grohmann & Sakha, 2019). Moreover, by putting in relation current and future consumption,
it is sometimes possible to observe that an increasing relation is found for low and moderate
past consumption levels, whereas future consumption decreases if the quantity currently
consumed is too high, which is a typical consumption saturation effect see (Barnett, 1973;
Higgins, 1972; Varian, 2014). In other words, the consumption choice of a consumer can be
influenced by preferences that can endogenously evolve according to the historical amount
of goods consumed1 and at the same time, the choice may not only reflect the preference
but also the aspiration of a consumer to want to belong to a group, imitating the behavior of
this reference group. The consequences of these effects on the consumption choices can be
complicated and in this work we aim at shading some light on such an intriguing topic.

To do that we move from the basic framework developed in (D’Orlando & Rodano, 2006)
by D’Orlando and Rodano, who proposed a dynamic model to describe adaptive consumers
that update their consumption choices on the basis of the observed discrepancy between the
expected utility gain from the consumption of a given good (measured by the price paid) and
the effective utility gain. This gives rise to a one-dimensional dynamical system mimicking
the behavior of boundedly rational consumers whose repeated choices follow a trial and error
(or adaptive) method, because at each time they correct the previous choices on the basis of
their observations. The unique stationary state in this dynamic process is a rational steady
state, i.e. the same choice of a rational agent whose chosen quantity is given by the solution of
the utility maximization problem (where the price equals the marginal utility). If such steady
state is asymptotically stable under the adaptive process proposed, then an "evolutionary
explanation" of the assumption of rational behavior is obtained. Indeed, as already noticed
in (D’Orlando & Rodano, 2006), in this case one may say that the boundedly rational agents
are able to learn from their past experience and become rational in the long run. In (Alchian,
1950) Alchian used a similar approach to show how economic agents (which were firms in
that case) follow a "Darwinian" evolution.

However in (D’Orlando & Rodano, 2006) the model is further improved by assuming
that also the parameter that characterizes the utility function is updated according to the
consumption choice of the previous period, and the dynamic model becomes a discrete two-
dimensional dynamicmodel, andwhose time evolution is given by the iteration of a nonlinear
map of the plane into itself, whose steady states represent local maximum points of the utility
function, i.e. again the choices of a rational consumer. The long run dynamics of this two-
dimensional model is first considered in (D’Orlando & Rodano, 2006) by assuming that
the consumers increasingly prefer a good consumed in the past due to habits or skillness
gained, i.e. the learning mechanism, connecting current to past consumption of the good
considered, is based on an increasing function (more consumption now implies even more in
the future).This means that the dynamic model is represented by the iteration of a nonlinear
invertible two-dimensional map, whose steady states represent possible alternative choices

1 Another possibility, not studied in this paper, is to consider goods whose consumption creates addiction for
the consumer.
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of rational consumers. The global dynamic properties of this model have been studied in
(Bischi & Tramontana, 2007), where the presence of a denominator that can vanish is linked
to the presence of certain singularities denoted as focal points and prefocal curves in (Bischi
et al., 1999, 2003, 2005), whose presence strongly influences the structure of the basins of
attraction.

A generalization of the model has recently been introduced in (Bischi & Tramontana,
2023), where the saturation effect has been considered. In that work this assumption leads to
a unimodal (or one-hump) preference function instead of an increasing one,which implies that
the two-dimensional map, whose iteration represents the time evolution of the consumer’s
choices, is transformed from an invertible map to a noninvertible one. This suggests that
new global dynamic effects, related to the folding action of critical curves (a feature of
noninvertible maps), are added to those due to the presence of focal points. These new global
properties influence the structure of the attractors as well as their basins of attraction.

In the meantime, a modification to the one-dimensional model with constant preferences
of D’Orlando and Rodano has been proposed in (Bischi & Tramontana, 2022): a behavioral
component has been added to the demand side to take into account the results of some
experiments conducted by behavioral economists, to show that the consumers, in making
their consumption choices, can be influence by a reference level of consumption. In order to
capture this effect, in (Bischi & Tramontana, 2022) a term has been introduced so that the
consumption of the good is increased (resp. decreased) in the next period if currently it is lower
(resp. higher) than the reference one. This implies that a steady state consumption, besides
the consumer’s own preferences, also reflects the consumption level of the reference group.
As a consequence, as stressed in (Bischi & Tramontana, 2022), these steady states no longer
correspond with rational steady states, as they also include the bias reflecting the influence of
other consumers. So, even in the case of convergence to a steady state, the consumers do not
learn to be rational, as they converge to a steady state quantity representing a compromise
between their tastes and the consumption of the reference group. Moreover, if the behavioral
bias is accentuated, then convergence to a steady state may fail, and consumption choices
may vary erratically. At the same time, if the discrepancy between the consumption driven
by tastes and the one driven by the others is quite large, convergence may be facilitated, thus
confirming that the effects of behavioral features are not easily predictable.

The aim of this paper consists in combining, in a more general dynamic model, the two
distinct effects discussed in (Bischi & Tramontana, 2022, 2023), namely the behavioral bias
towards the reference group consumption and the saturation effect in the updating of the
preference function.

As we shall see, these two combined effects will give rise to a more complicated analysis
of the existence of steady states. Moreover, the parameter which measures the attitude of the
consumers to imitate the choices of the reference group may have non monotonic effects, in
the sense that in some ranges (namely for sufficiently low values) its increase enhances the
stability of steady states, whereas in different ranges (for higher values) increasing values
may lead to stability loss and the outcome of periodic or chaotic patterns due to overshooting
phenomena, as is often observed in real systems. Numerical explorations of the model show
more frequent situations ofmultistability, i.e. the coexistence of several attractors eachwith its
own basin of attraction, so a problem of path dependence arises and the adaptive mechanism
proposed becomes a device for the selection of the dynamic pattern prevailing in the long run.
In such situations the role of initial conditions is crucial, and the delimitation of the basins of
attraction must be considered in the study of the model. This requires a global analysis of the
nonlinear model of the evolutive consumer proposed in this paper by using methods that are
mathematically interesting. Indeed, effects of nonlinearity in economic modelling have been
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extensively studied in the literature. A common consequence of the coexistence of several
attractors in nonlinear dynamic models is given by the property that small perturbations are
recovered in as far as they are confined inside a neighborhood of a given attractor, whereas
larger perturbations lead to time evolutions that further depart from the steady state and in the
long run go towards a coexisting attractor, a situation that has been called "corridor stability"
in (Leijonhufvud, 1973), see also (Dohtani et al., 2007). However, the results given in this
paper also provide different situations when non-connected basins of attraction, formed by
sets of disjoint portions of the basin, exist. In fact, the presence of non-connected basins
can be described by saying that a small perturbation can be recovered by the endogenous
dynamics of the evolutivemodel, amedium-size perturbationmay lead to a different attractor,
whereas an even larger perturbation may be recovered leading the system back to the original
attractor. These situations can only be studied by global dynamic methods, which can usually
be performed through heuristic methods obtained by a combination of analytical, geometrical
and numerical approaches.

Even if the results of this paper are obtained for a particular dynamic model, the mathe-
matical methods used to obtain these results are quite general, and the conclusions obtained
about two kinds of complexity, related to complex attracting sets and complex structure of
the basins of attraction, can be extended to general classes of discrete-time adaptive models.
From a mathematical point of view, these methods involve the study of noninvertible maps
as given in (Mira et al., 1996) as well as some global properties of maps with a vanishing
denominator, see e.g. (Bischi et al., 1999; Bischi & Tramontana, 2007; Naimzada & Tramon-
tana, 2009). In particular, the model studied in this paper gives us the opportunity to learn
an important lesson, because in some parameters’ ranges such that the steady state is locally
stable, a global analysis shows that other attractors coexist with the locally asymptotically
stable steady state, thus giving a strong path dependence. These dynamic scenarios clearly
show the importance of a global analysis of nonlinear dynamical systems, because a study
limited to local stability and bifurcations, based on the linear approximation of the model
around the steady states, sometimes may be quite incomplete and even misleading.

To sum up, the aim of this paper is twofold: First we join two economic assumptions
about the behavior of the evolutive boundedly rational consumer, namely the behavioral bias
of imitating the consumption of a reference group and a saturation effect in the evolution
of the preference function; Second we use mathematical methods for the global qualitative
analysis of nonlinear dynamical systems, such as critical curves and focal points, to provide
an exemplary study of the global bifurcations leading to the creation of complex topological
structures of attractors and basins of attraction.

The paper is organized as follows. In Sect. 2, a description of the economic dynamicmodel
is given. In Sect. 3, the existence of steady states is studied. In Sect. 4, some definitions related
to the basins are given together with an analysis of global geometric properties of the dynamic
model considered. In Sect. 5, these definitions and results are applied to the study of the global
bifurcations of the basins of the economic dynamic model considered in this paper through
some numerical simulations. Section6 concludes and outlines further studies. In addition,
a mathematical appendix is added to summarize some general properties of noninvertible
maps and critical curves, in order to provide a more self-contained paper.
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2 Themodel

Let x be the quantity of a given good and y the aggregated quantity of all the other goods
that a consumer can buy. The utility U (x, y) is a smooth function of its arguments that
represents the satisfaction obtained by the consumer as a consequence of the consumption
of the goods. If p is the unitary price of the good considered and the price of all other goods
is conventionally taken as a reference unitary price, the budget constraint becomes

px + y = m (1)

where m is the amount of money that a consumer can use to buy goods. A rational choice of
the consumer is a solution (x∗, y∗) of the problem of maximization of U under the budget
constraint (1). If we exclude corner solutions,2 a rational solution is identified by

MRS = ∂U/∂x

∂U/∂ y
= p; px + y = m (2)

where MRS is the Marginal Rate of Substitution between the goods x and y, with the latter
that can be interpreted as a composite good made up by all the other goods. In particular if
MRS = p the consumer has no incentive to change the goods composition, while if MRS >

(<) p then there is the incentive to reallocate the budget m by increasing /decreasing) the
amount of the good x . However, under the assumption of bounded rationality, in (D’Orlando
& Rodano, 2006) the consumers are considered unable to compute the solutions of this
problem, and they follow a time adjustment process:

xt+1 = xt + μ [MRS (xt ) − p] (3)

where μ > 0 represents the speed of adjustment. This adaptive process is based on the
assumption that at any time period t the quantity xt+1 that the consumer decides to buy
in the next period is obtained as a correction of the quantity chosen in the current period,
xt , according to the discrepancy between the given price p and the experienced relative
utility gain MRS(xt ). It is straightforward to notice that a steady state xt+1 = xt of this
process is a rational choice, i.e. a solution of (2). Following (Bischi & Tramontana, 2022),
we also consider a behavioral component by assuming that the consumer is influenced by the
consumption level xr of a reference group, and consequently we add a term in the dynamic
equation such that the consumption of the good considered is increased (resp. decreased) in
the next period if currently it is lower (resp. higher) than xr

xt+1 = xt + μ [MRS (xt ) − p] + γ (xr − xt ) (4)

where the parameter γ ≥ 0 measures how relevant is the influence of the reference consump-
tion level xr on the consumption choices of the given consumer.

In (D’Orlando & Rodano, 2006) a Cobb-Douglas utility function is considered:

U (x, y) = xα y1−α (5)

where x > 0, y > 0 (i.e. x < m/p according to (1)) and the real parameter α ∈ [0, 1]
represents the amount of the good x needed to compensate a reduction of one unit of the
composite good y (i.e. it parametrizes the steepness of the slope of the Cobb-Douglas utility
function). Moreover, we can also say that parameter α measures the preference (marginal

2 To exclude corner solutions it is sufficient to have asymptotic indifference curves and this is the case for the
most used utility functions, such as Cobb-Douglas and CES utility functions.
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utility) for good x (if wemultiply the quantity x by a factor k > 0, then the utility ismultiplied
by a factor kα). From (5) we get

MRS(x) = α

1 − α

y

x
= α

1 − α

m − px

x
(6)

provided that α < 1. In the following we assume m > p, so that small values of x are not
associated with small y as well. Plugging (6) into (4) the adjustment process becomes

xt+1 = xt + μ

1 − α

(
mα

xt
− p

)
+ γ (xr − xt ) . (7)

In (D’Orlando & Rodano, 2006) it is also assumed that the consumer’s preferences may be
influenced by past choices, i.e. the preference parameter is endogenized to become a dynamic
variable depending on past consumption

αt+1 = α (xt ) (8)

and the dynamic model becomes two-dimensional, the evolutive process being represented
by the iteration of the two-dimensional map (xt+1, αt+1) = T (xt , αt ), where

T :
⎧⎨
⎩
xt+1 = xt + μ

1−αt

(
mαt

xt
− p

)
+ γ (xr − xt )

αt+1 = α (xt )
(9)

The denominators in the first component of the map T are positive under the already stated
conditions xt > 0 and 0 ≤ αt < 1. In (D’Orlando & Rodano, 2006) α (x) is assumed to be
a continuous and increasing function, i.e. a consumer prefers to consume a good more and
more according to the quantity consumed in the previous period, due to consumption habits
or skillness gained because of past consumption, and they propose an increasing exponential
sigmoidal function see also (Bischi & Tramontana, 2007). However, as the same authors
suggest, one may assume that if past consumption is too high then the consumer becomes
tired of that good, i.e. a saturation effect occurs related to a decreased necessity to buy that
good. This suggestion has been taken up in (Bischi & Tramontana, 2023), where a continuous
unimodal function is considered, similar to the one used in (D’Orlando & Rodano, 2006) for
low values of consumption x whereas it becomes a decreasing function for high values of x .
The particular functional form proposed in (Bischi & Tramontana, 2023) is

α(x) = 1

k
x2e−hx + l (10)

with kh2 > 4
(1−l)e2

in order to ensure α < 1, the range of (10) being α ∈
(
l, l + 4

4e2kh2

)
,

as α(0) = l and it reaches its maximum value at x = 2
h . The parameter l > 0 has been

introduced to mimic, for low values of x , the shape of the increasing sigmoid function used
in (D’Orlando & Rodano, 2006), whereas for x > 2

h (10) decreases and approaches the
horizontal asymptote α = 0 as x → +∞.

In the following we study the global dynamic behavior of the model (9) with (10).

3 Steady states

The steady states of the adaptive model described in the previous section are obtained by
setting xt+1 = xt and αt+1 = αt in (9) and, considering the preference function (10), are
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given by the solutions of the system{
μ

1−α

(mα
x − p

) + γ (xr − x) = 0

α = x2e−hx

k + l

whose solutions can be graphically represented as the intersections between the two curves
of equation

{
α = γ x2−γ xr x+μpx

γ x2−γ xr x+μm

α = x2e−hx

k + l
(11)

In this paper we are mainly interested in the effects of the behavioral parameters xr and γ , so
we shall consider the second function, i.e. the unimodal preference function (10), as a fixed
curve, and we study the modifications of the first one induced by variations of xr and γ . First
of all we stress that for γ = 0 it reduces to the straight line α = p

m x , thus giving the rational
steady states (from one to three) already studied in (Bischi & Tramontana, 2023). Even for
γ > 0 the first function (11) starts from the origin, i.e.α(0) = 0 but as x → +∞ it approaches
the horizontal asymptoteα = 1 from above, i.e.α(+∞) = 1+, and it intersects the lineα = 1

at x = m
p , i.e. α

(
m
p

)
= 1. Moreover, if γ xr > μp then the curve intersects the horizontal

axis α = 0 at x = xr − μp
γ
. The denominator is always positive when xr < 2

√
μm
γ
, whereas

for xr > 2
√

μm
γ

it has two positive roots 0 < x1 < x2 with x1,2 = xr
2

(
1 ±

√
1 − 4μm

γ x2r

)
at

which the two vertical asymptotes x = x1 and x = x2 are located. Some situations are shown
in Fig. 1, from which it can be seen that for l > 0 at least one steady state with positive
consumption exists, and two further positive steady states consumption values can be obtained
under different conditions on the parameters. The different number and coordinates of the
steady states represented in the panels of Fig. 1 may have an interesting interpretation. From
(Bischi & Tramontana, 2023) we know that the underlyingmodel without behavioral features
may be characterized by three steady states with increasing values of consumption and level
of preference (we denote them here with El , Em and Eh , respectively). The introduction
of the tendency to imitate the behavior of a reference group may have the effect of solving
this uncertain scenario in favour of one of the extreme steady states. For instance, panel c
(resp. d) of Fig. 1 shows that if the reference consumption level is low (resp. high) enough
the coexistence of steady states is solved and only the lowest (resp. highest) valued steady
state remain. In other words, when the comparison with a reference group is introduced in
the model, the steady state which is more distant from the reference consumption may be
eliminated.

Unfortunately, an analytical computation of the steady states values cannot be obtained,
and neither can the stability conditions for their creation/destruction via fold bifurcations
related to tangency between the two curves. So, our study of the dynamical properties of the
model considered in this paper will mainly rely on numerical explorations. However, some
global dynamical properties of the nonlinear model (9) will guide our numerical analysis.
Indeed, even if the nonlinear model (9) is represented by the iterated application of a non-
invertible map with a denominator that can vanish, it allows the analytical computation of
the equations of some curves, such as the critical curves see e.g. (Mira et al., 1996) and the
prefocal curves see e.g. (Bischi et al., 1999), whose contacts with attractors or the bound-
aries of their basins of attraction give rise to some global bifurcation that may be useful to
explain some global dynamic scenarios as well as their qualitative changes, i.e. some peculiar
modifications of their topological structure.
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The following section is dedicated to the analytic computation of these curves.

4 Global properties of themap

When a dynamical system has several coexisting attractors, a study of its global properties is
necessary in order to understand the structure of the boundaries that separate the respective
basins of attraction (see the Appendix for a summary of the main properties and definitions).
Starting from the definition of stability, let U be a neighborhood of an attractor A whose
points converge to A. Of course U ⊆ B (A), but also the points which are mapped inside U
after a finite number of iterations belong to B (A). Hence, the basinof A is given by the open
set B (A) = ⋃

n≥0 T
−n(U ), where T 0(x, α) = (x, α) and T−n(x, α) represents the set of

rank-n preimages of (x, α), i.e. the set of points that are mapped into (x, α) after n iterations
of the map T . The basin B(A) is trapping under T and invariant under T−1, i.e.

T−1(B (A)) = B (A) , T (B (A)) ⊆ B (A)

The boundary behaves as a repelling set for the points near it, since it acts as a watershed for
the trajectories of the map T . Points belonging to ∂B(A) are mapped into ∂B(A) both under
forward and backward iteration of T . More exactly

T−1(∂B(A)) = ∂B(A), T (∂B(A)) ⊆ ∂B(A)

We remark that T−1(∂B(A)) = ∂B(A) implies that if a curve segment belongs to ∂B(A) then
also all its preimages must belong to ∂B(A). In particular, ∂B(A) includes the whole stable
set of any fixed point (or cycle) of T belonging to ∂B(A). So, in order to study the structure of
the boundaries of a basin, the properties of the inverse (or inverses if a map is noninvertible,
see the Appendix, or (Mira et al., 1996) for more details) must be considered. The map T

defined in (9) is noninvertible because given (xt+1, αt+1), with αt+1 ∈
(
l, l + 4

e2kh2

)
, then

two distinct preimages 0 < xt,1 ≤ 2
h ≤ xt,2 are obtained from the second component, and

for each xt .i , i = 1, 2, we get the corresponding

αt,i = (xt+1 − xt .i )xt .i + μpxt .i − γ (xr − xt .i )

μm + (xt+1 − xt .i )xt .i
.

Instead, if αt+1 = l + 4
e2kh2

then the two preimages merge into the same: xt,1 = xt,2 = 2
h ,

and if αt+1 > l + 4
e2kh2

then no preimages exist. According to the number of preimages,
this kind of noninvertible map is denoted as Z0 − Z2 map (see the Appendix, or (Mira et al.,
1996) for more details).

4.1 Critical curves

As recalled in the Appendix, the global properties of a noninvertible map can be studied by
using the method of critical curves LC (from the French “ Ligne Critique”) defined as the
locus of points having two, or more, coincident rank-1 preimages, located in a set denoted by
LC−1. Analogously to the case of differentiable one-dimensional maps, where the derivative
necessarily vanishes at the local extremum points, for a two-dimensional differentiable map
LC−1 belongs to the set of points in which the Jacobian determinant vanishes, i.e. LC−1 ⊆{
(x, α) ∈ R

2| det J = 0
}
, and LC is obtained as the image of LC−1, i.e., LC = T (LC−1).
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Fig. 1 The two curves (11) whose intersections define the steady states of the dynamical system. Some cases
with three steady states (panels a and b), obtained for k = 0.69, p = 7.3, m = 10, μ = 0.98, l = 0.01,
h = 0.86, γ = 0.3 and xr = 12 (panel a) and k = 2.2, p = 3, m = 9.4, μ = 4, l = 0.01, h = 0.75, xr = 6.6
and γ = 0.8 (panel b). Panels c-f show cases with a unique steady state. Panels c and d are obtained for the
same configuration of parameters used in panel a but xr = 0 (panel c) and xr = 20 (panel d). Panels e and f
are obtained for the same configuration of parameters used in panel b but γ = 0 (panel e) and γ = 1.5 (panel
f)
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The Jacobian matrix of (9) is given by

J (x, α) =
[
1 − γ − μmα

x2(1−α)
μ

m−px
x(1−α)2

α′(x) 0

]
(12)

whereα′(x) = 1
k xe

−hx (2 − hx). The Jacobiandeterminant is det J (x, α) = −μ
m−px
x(1−α)2

α′(x),
hence it vanishes along the lines x = m

p and x = 2
h , as α′( 2h ) = 0 The image of the line

x = 2
h is a critical curve

LC = T

(
x = 2

h
, α

)
=

(
2

h
+ γ

(
xr − 2

h

)
+ μ

2

(
mhα − 2p

1 − α

)
, l + 4

e2kh2

)
(13)

i.e. the line α = l + 4
e2kh2

separates the region Z2 =
{
(x, α) ∈ R

2|α < l + 4
e2kh2

}
, whose

points have two rank-1 preimages, from the complementary region Z0, whose points have
no preimages.

The folding action of LC , which leads different points to be mapped into the same image,
can be seen as an extreme form of overshooting. As argued in the previous section, the map T
is non-invertible because of the presence of the backward bending portion of the preference
curve α(x), i.e. in the model proposed in this paper, non-invertibility is due to the rejection
of a previously abused good. In other words, after an excessive consumption of the good
considered, a strong fall of consumption is expected in the next time period, and this can be
seen as an intuitive economic explanation of the role of LC in the global dynamics of the
map T .

Instead, the image of the line x = m
p is a single point

T (x = m

p
, α) =

(
m

p
− μp + γ

(
xr − m

p

)
,
m2

kp2
e−h m

p + l

)

i.e. the whole line is "focalized" by T into a single point, that we shall denote as Q−1. Indeed,
by using the terminology introduced in (Bischi et al., 1999), we can say that the line x = m

p

is a prefocal line of T−1, as explained in the next subsection.

4.2 Focal point and prefocal curves

Let us consider a two-dimensional map with at least a component not defined in the whole
plane due to the presence of a denominatorwhich can vanish. For example, the first component
of the map (9) has a denominator D(x, α) = x (α − 1) vanishing along the lines x = 0 and
α = 1, denoted as the set of nondefinition of the map T

δs = {(x, α) ∈ R
2|D(x, α) = 0}. (14)

If we consider a smooth simple arc γ transverse to δs , its image T (γ ) is in general made
up of two disjoint unbounded arcs, but a different situation may occur if the point where γ

intersects δs is such that not only the denominator but also the numerator vanishes in it, as
it occurs for the map (9) in the point Q = (0, 0). In this case the image curve T (γ ) may
be bounded, and the following definition of focal point and prefocal curve can be given (see
Bischi et al. 1999):

Definition A point Q is a focal point for the map T if at least one component of T takes the
form 0/0 in Q and there exist smooth simple arcs γ through Q such that their image T (γ )
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is finite. The set of all the finite images of Q computed along different arcs γ through Q is
the prefocal set δQ .

Following (Bischi et al., 1999), let us consider the first component of the map in the form
N (x,α)
D(x,α)

, and let Q = (0, 0) be a simple root of the algebraic system

N (x, y) = 0, D(x, y) = 0

We recall that Q is simple if Nx Dy − N yDx 
= 0, where Nx = ∂N
∂x (Q) and analogously

for the other partial derivatives. In this case the line α = α(0) is the corresponding prefocal
curve, where α(x) is the preference function (10), and a one-to-one correspondence is defined
between the point (x, α(0)), in which T (γ ) crosses δQ, and the slope m of γ in Q, given by

m → (x(m), α(0)), with x(m) = (Nx + mNy)/(Dx + mDy) (15)

and

(x, α(0)) → m(x) with m(x) = (Dx x − Nx ) / (Ny − Dyx). (16)

From the definition of the prefocal curve, it follows that at least one inverse of the map T
exists, say T−1, such that all the points of δQ are mapped by T−1 into the focal point Q, i.e.
T−1

(
δQ

) = Q. Hence T−1 is not locally invertible in the points of δQ , being it a many-to-
one map, and this implies that its Jacobian cannot be different from zero along δQ . Roughly
speaking, a prefocal curve is a set of points for which at least one inverse exists which maps
(or “ focalizes”) the whole set into a single point, called focal point. From the relations (15),
(16) it follows that different arcs γ j , passing through a focal point Q with different slopesm j ,
are mapped by T into bounded arcs T (γ j ) crossing δQ in different points

(
x(m j ), α(0)

)
. Let

δQ be a prefocal curve whose corresponding focal point is Q. Then each point sufficiently
close to δQ has its rank-1 preimage in a neighborhood of the focal point Q, and if an arc
ω crosses δQ in two distinct points, say (x1, α(0)) and (x2, α(0)) then its preimage T−1(ω)

must include a loop with double point in Q, as shown in the qualitative picture in Fig. 2.
In the map (9), the first component can be written as

xt+1 = N (xt , αt )

D(xt , αt )
= (1 − αt )x2t − μpxt + μmαt + γ xt (xr − x) (1 − αt )

xt (1 − αt )

and it becomes 0/0 in Q = (0, 0) and R =
(
m
p , 1

)
. These are both focal points, with

corresponding prefocal curves

δQ = {(x, α) |α = l}
and

δR =
{
(x, α) |α = m2

kp2
e− hm

p + l

}

respectively. The one-to-one relations (16) between slope s (through the focal point) and
position x(s) along the corresponding prefocal line are given by

x(s) = μms − μp + γ xr

for the focal point Q, and

x(s) = (1 − γ )m − μp2 − 3γ pxr
p

− μp2

ms
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Fig. 2 Panel (a). Arcs through a focal point Q with different slopes are mapped into arcs crossing through δQ
in different points. Panel (b). A preimage of an arc crossing through the prefocal line δQ into distinct points,
given by a loop with double point in the focal point Q

for the focal point R. The presence of these focal points and corresponding prefocal curves
has important effects on the geometrical and dynamical properties of the dynamical system
considered. In fact, a contact of an arc ω with a prefocal curve gives rise to important
qualitative changes in the shape of the preimages T−1

j (ω), and when ω is an arc belonging

to a basin boundary F , the qualitative modifications of the preimages T−1
j (ω) of ω, due to

a tangential contact of ω with a prefocal curve can be particularly important for the global
structure of the basin boundary. In fact, as F is backward invariant, i.e. T−1(F) = F , if ω

is an arc belonging to F , then all its preimages of any rank must belong to F . This implies
that if a portion ω of F crosses a prefocal curve in two points, then the basin boundary must
include loops, denoted as ” lobes”, somewhere along the basin boundary. As we shall see
in the next section, this occurrence, together with the contacts and intersections of basin
boundaries with critical curves LC , constitute the basic mechanisms leading to the involved
structures of the basins of attraction.

5 Global numerical explorations and contact bifurcations

In this section we use numerical methods to study the effects of the behavioral parameters γ

and xr on the long-run dynamics of consumption x (t) according to the adaptive model (9)
with consumers’ preference adjustment function (10).We consider the fixed set of parameters
m = 10, p = 2.5, μ = 0.98 and k = 1, h = 0.86, l = 0.01 already considered in (Bischi
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& Tramontana, 2023), that can be seen as a benchmark case of our model, obtained with
γ = 0, i.e. without the behavioral term. In Fig. 3 a bifurcation diagram is shown, obtained
with fixed reference consumption level xr = 5 and bifurcation parameter γ varying in the
range [0, 1]. For γ = 0 three steady states exist, given by El = (

x∗
l , α∗

l

) = (0.05, 0.01),
saddle point, Em = (

x∗
m, α∗

m

) = (0.27, 0.07), unstable node, Eh = (
x∗
h , α

∗
h

) = (2.84, 0.71),
unstable focus, and as shown in (Bischi & Tramontana, 2023) a stable closed invariant curve
exist around Eh (which is a rational steady state) on which the long-run dynamics of the
model are characterized by self-sustained bounded oscillations. This means that for this
parameters’ constellation the boundedly rational consumers described by the model do not
learn to be rational, however their consumptions are confined around the rational choice
even if exhibit bounded oscillations. We now assume that a reference group of consumers
exists, characterized by a level of consumption xr = 5 of the good considered, which is
higher than the rational one (and even higher than the upper portion of the oscillations)
and we numerically explore the effects of the increasing influence of the reference group
consumption on the consumer described in the model, measured by increasing values of the
imitation parameter γ . As can be seen in the bifurcation diagram in Fig. 3, as γ is increased
beyond the value γ � 0.5 the upper steady state becomes stable through a supercritical
Neimark-Sacker bifurcation. We stress that for γ = 0.5 the steady state Eh = (3.10, 0.68) is
unique (El and Em just disappeared) and themodulus of their complex conjugate eigenvalues
is 0.99, i.e. it just gained local stability. It can also be noticed that, as expected, the steady state
consumption is higher than the rational one, due to the tendency to imitate the consumption
habits of the reference group. As explained in (Bischi & Tramontana, 2022), the steady
state consumption now represents a compromise between a consumer’s preferences and the
higher consumption of the reference group. However, it is worth remarking that increasing γ

leads to the stability of the steady state, whereas the results given in (Bischi & Tramontana,
2022) for the model with constant preferences, show that increasing values of γ generally
have a destabilizing role. This is due to the fact that in the model considered in this paper
the consumer’s preference is adapted along the evolutive process, and the steady state is
located in the decreasing portion of the preference curve, i.e. the portion characterized by the
consumption saturation effect. So, on the one side the personal preferences suggest consuming
less in time periods following excessive consumptions, thus leading to oscillations, whereas
the tendency to imitate the reference group suggests consuming more. Hence increasing
values of γ reinforce the latter effect and eliminates oscillations.

How strong is the stability of this steady state, i.e. how far from it can consumption
be displaced by an exogenous shock and be sure that you will return to it? As the model
considered is nonlinear, an answer to this question requires a study of the basin of attraction.
This is shown in the left panel of Fig. 4, obtained for γ = 0.5, where the white region
represents the set of initial conditions that generate trajectories converging to the stable steady
state, whereas the points in the grey region represent initial conditions whose trajectories are
unfeasible, as they involve negative values of x .We remark that feasible values of x should be
limited to the range (0,m/p) = (0, 4), however, as we will explain in a moment, important
dynamic changes in the feasible region can only be explanted by a larger view, involving
values of x > m/p as well. Indeed, in the situation shown in the left panel of Fig. 4, it can
be noticed that the basin of attraction of the stable steady state is a simply connected set.
However, a portion of the grey basin, in the upper-right portion of the picture, is quite close
the the critical line LC , represented by the horizontal line (13) of equation α = l + 4

e2kh2
,

that separates the region Z0 (formed by the points with no preimages) from Z2 (the points
with two distinct preimages). If the grey region has a contact with the line LC , after which
a portion of the grey basin enters Z2, then new preimages of the grey basin will be created
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Fig. 3 Bifurcation diagram
obtained with the fixed set of
parameters m = 10, p = 2.5,
μ = 0.98, k = 1, h = 0.86,
l = 0.01 and xr = 5 with
bifurcation parameter γ.

Fig. 4 Phase portraits of the model (9) with preference function (10). Panel a: the same parameters as in Fig. 3
and γ = 0.5; panel b: γ = 0.68

belonging to the gray basin as well. This is shown in the right panel of Fig. 4, obtained
with a slightly larger value of the parameter γ , namely γ = 0.68. At this stage a portion of
the grey basin crosses the critical line LC and its portion below LC , denoted by H in the
picture, belongs to region Z2. So two preimages of it exist, say H1−1 and H2−1, located along
opposite sides of the vertical line LC−1 of equation x = 2

h , and merging along it. Following
the terminology introduced by (Mira et al., 1996), this is a hole (or lake) of the basin of
unfeasible trajectories nested inside the basin of the stable steady state. We can say that the
grey basin of unfeasible trajectories includes a non connected component, or that the basin of
the stable steady state becomes multiply connected after the contact bifurcation. As stressed
above, it is important to remark that even if the hole is inside the feasible region and close to
the steady state, the contact bifurcation which explains its creation occurs quite far, outside
of the feasible region x ∈ (0,m/p).

No further portions of the grey basin exist because this first hole is entirely included inside
the zone Z0 (above LC) whose points have no preimages. However, we can notice that a
portion of this grey hole, whose points generate unfeasible trajectories, is quite close to the
critical line LC . Indeed, if the parameter γ is further increased, so that the hole enlarges until
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it has a contact with LC , then a portion of the hole will enter the zone Z2 and new preimages
will be created belonging to the basin of unfeasible initial conditions. This is shown in the
left panel of Fig. 5, obtained for γ = 0.75, where a portion of H−1 is inside Z2. Again, this
implies that it has two preimages, say H1−2 and H2−2 located at opposite sides with respect
to the vertical line LC−1 and merging along it. But now, differently from the case shown
in Fig. 4, the new hole H−2 has a portion belonging to Z2 which in turn generates new
preimages, say H1−3 and H2−3 etc. So more and more non connected portions of the grey
basin proliferate inside the multiply connected basin of the stable steady state. Of course,
this leads to more uncertainty,3 about the fate of the trajectories following an exogenous
shock in the consumption level, because some holes are close to the steady state, implying
that some big shocks are recovered going back to the steady state, smaller ones may generate
time evolutions of the consumption levels which never return to the steady state level.

In the meantime we can notice that some portions of the grey basin cross the prefocal
lines δQ and δR thus giving rise to lobes issuing from the focal points Q and R respectively.
These are clearly seen in Fig. 5.

However, the situation becomes more and more complicated if γ is further increased,
as can be deduced from the bifurcation diagram shown in Fig. 3. In fact, the steady state
E∗
h remains locally asymptotically stable for γ increasing up to γ = 1. On the basis of a

bifurcation diagram obtained by generating, for each value of the bifurcation parameter, a
trajectory starting from an initial condition taken in a neighborhood of the steady state, as
usually done by commercial software programs, onemay conclude that the long run evolution
of the dynamical system is characterized by convergence to the unique steady state for values
of the parameter γ up to γ � 1. By contrast, by using different initial conditions we can see
that as γ is increased above γ � 0.8 a coexisting attractor exist, a stable cycle of period 2.
Our numerical explorations of this dynamical system show a situation of great uncertainly
about the kind of long-run evolution of the consumption levels, so the sequence of dynamic
scenarios we are going to show in the following is rather emblematic. For example, the right
panel of Fig. 5 shows three basins represented by three different colors: the white basin of
the locally asymptotically stable steady state, the grey basin of unfeasible evolutions, the red
basin of the stable cycle of period two. The basins are quite intermingled, with non connected
portions created by contacts with the critical line and lobes issuing from the focal points Q
and R created by contacts of basins’ boundaries with the two prefocal lines.

Another dynamic scenario is shown in Fig. 6, where the role of the two focal points
becomesmore andmore evident. Such dynamic situations reveal a very high uncertainty, even
if the presence of a unique stable steady state (Eh) may suggest an apparently innocuous case
according to the usual analysis of dynamical systems that represent economic systems. For
instance, by further increasing the value of γ , the cycle of period two undergoes a Neimark-
Sacher bifurcation at γ � 0.997 originating two closed invariant curves, clearly visibile in
Fig. 6, obtained with a value of γ slightly higher than one (γ = 1.022). Its basin of attraction
is made up by the points in red. Moreover, a stable cycle of period four (basin in green) is
also present, forming a scenario with three coexisting attractors and the global structures of
the basins of attraction is even more complicated.

The dynamic scenarios shown in this section give us the opportunity to recall how a
study limited to a local stability analysis might be misleading when dealing with nonlinear
dynamical systems.

3 From hereon, when we talk about uncertainty we refer to the long-run behavior of the system, and not to a
stochastic element.
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Fig. 5 Phase portraits of the model (9) with preference function (10). Panel (a): The same parameters as in
Fig. 3 and γ = 0.75; Panel (b): γ = 0.85

Fig. 6 The same parameters as in
Fig. 3 and γ = 1.022

6 Conclusions

In this paper a behavioral component has been introduced in a dynamicmodelwhich describes
the repeated choices of a boundedly rational consumer with preferences which are adaptively
updated over time. The component introduced describes the influence of the consumption of
a reference group (usually of peers) that the consumer can be tempted to imitate in order to
feel more integrated in the group.

So, the quantity of the good that the boundedly rational consumer decides to buy over
time is conditioned by two factors that may be in contrast and hence create uncertainty about
consumption decisions: the consumer’s own preferences (or tastes) and the consumption
levels of the reference group.

Indeed, the dynamic scenarios analyzed in this paper, mainly numerically due to the
analytical difficulties related to high nonlinearity of themodel, show that the presence of these
two contrasting effects create several situations of coexistence of different attractors, each
with its own basin of attraction, and the basins are quite intermingled, this giving strong path
dependence with great uncertainty about the final outcome of the time evolution generated
by different initial conditions (e.g. due to the effect of even small exogenous shocks). We
have also showed another, at first sight counterintuitive, result, proving exactly the opposite
of what we have just said: that is, when the consumer displays more than one rational steady
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state, the presence of the behavioral component may break the coexistence and leave only
the steady state which is closest to the reference consumption.

The global numerical explorations of the basins and their global (or contact) bifurcations
leading to complicated topological structures of the basins’ boundaries, has been guided by a
theoretical (and analytical) study of some singularities that characterize the global properties
of the dynamical system considered, such as critical curves and prefocal lines.

Generally, the analytical expressions of these curves are not known, whereas in this case
it has been possible to analytically describe them. This has allowed us to characterize some
global bifurcations that may lead to disconnected basins of attractions and finger-shaped
lobes issuing from single points of the phase plane. These dynamic scenarios, together with
their economic consequences, clearly show the importance of a global analysis of nonlinear
dynamical systems,which can often be performed only through an heuristicmethods obtained
by a combination of analytical, geometrical and numerical methods. In fact, a study limited to
an analytical study of the local stability and bifurcations, based on the linear approximation of
the model around the steady states, may sometimes be quite incomplete and even misleading,
as the example considered in this paper clearly shows. Indeed, this streamof literature, see e.g.
(Leijonhufvud, 1973) or (Dohtani et al., 2007), stresses the fact that nonlinear dynamicmodels
may have the property that small perturbations are recovered in as far as they are confined
inside the basin of attraction of a locally stable steady state, whereas larger perturbations lead
to time evolutions that further depart from the steady state and go to the coexisting attractor in
the long run, a situation that has been called "corridor stability". Instead, the results given in
this paper show a quite different situation when non-connected basins of attraction, formed
by disjoint (and sometimes far) portions of the basin, exist. In fact, the presence of non-
connected basins can be described by saying that a small perturbation can be recovered by
the endogenous dynamics of the evolutive model, a medium-size perturbation may lead to a
different attractor, i.e., a different long run evolution, whereas a larger perturbation may be
recovered leading back the system to the original attractor.

This work can be extended in several directions. We can test how general our result can be
by using different functions explaining how past consumption may influence the preference
for the good itself. We can also introduce more goods and consider how the consumption
of each of them may also influence the preferences for the others. Finally, an interesting
extension is the one where the reference quantity becomes endogenous and changes over
time. We aim at exploring these scenarios in our future work.
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Appendix: Noninvertible maps and critical sets

In this appendix we introduce some general concepts, notations and definitions about the
mathematical theory of discrete dynamical systems, in particular those which are represented
by the iteration of noninvertible maps.

A map T : S → S, S ⊆ R
n , defined by x′ = T (x), transforms a point x ∈ S into a

unique point x′ ∈ S. The point x′ is called the rank-1 image of x, and a point x such that
T (x) = x′ is a rank-1 preimage of x′. If x 
= y implies T (x) 
= T (y) for each x, y in S, then
T is an invertible map in S, because the inverse mapping x = T−1

(
x′) is uniquely defined;

otherwise T is a said to be a noninvertible map, because points x exist that have several rank-1
preimages, i.e. the inverse relation x = T−1

(
x′) is multivalued. So, noninvertible means “

many-to-one”, that is, distinct points x 
= y may have the same image, T (x) = T (y) = x′.
Geometrically, the action of a noninvertible map can be expressed by saying that it “ folds and
pleats” the space S, so that distinct points aremapped into the same point. This is equivalently
stated by saying that several inverses are defined in some points of S, and these inverses “
unfold” S. For a noninvertible map, S can be subdivided into regions Zk , k ≥ 0, whose
points have k distinct rank-1 preimages. Generally, for a continuous map, as the point x′
varies in R

n , pairs of preimages appear or disappear as it crosses the boundaries separating
different regions. Hence, such boundaries are characterized by the presence of at least two
coincident (merging) preimages. This leads us to the definition of the critical sets, one of the
distinguishing features of noninvertible maps see 1980; 1996:

Definition The critical set CS of a continuous map T is defined as the locus of points having
at least two coincident rank − 1 preimages, located on a set CS−1, called set of merging
preimages.

The critical set CS is generally formed by (n − 1)-dimensional hypersurfaces of Rn , and
portions of CS separate regions Zk and Zk+2 (this is the standard occurrence for continu-
ous maps). It is the n-dimensional generalization of the notion of local minimum or local
maximum value of a one-dimensional map, and of the notion of critical curve LC of a non-
invertible two-dimensional map. The set CS−1 is the generalization of local extremum point
of a one-dimensional map, and of the fold curve LC−1 of a two-dimensional noninvertible
map. For example, if a one-dimensional differentiable map f (x) has a local maximum point
c−1, then the first derivative vanishes, f ′(c−1) = 0 and the corresponding maximum value
c = f (c−1) (called critical point) is a "turning point" that separates the real line into the two
subsets: Zk (above c) and Zk+2 (below c), such that two distinct points, say x1 and x2, located
symmetrically with respect to its preimage c−1, are mapped into the same point x ′ < c. We
can consider the range of the map f formed by the superposition of two half-lines, joined at
the critical point c, and on each of these half-lines a different inverse is defined. This point of
view gives a geometric visualization of the critical point c as the point in which two distinct
inverses merge. The action of the inverses, say f −1 = f −1

1 ∪ f −1
2 , causes an unfolding of the
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range by mapping c into c−1 and by opening the two half-lines one on the right and one on
the left of c−1. Another interpretation of the folding action of a critical point is the following.
Since f (x) is increasing on the left of c−1 and decreasing on the right (being it a maximum),
the application of the map f (x) is orientation preserving if x < c−1, orientation reversing
for x > c−1. This suggests that an application of f to a segment including the point c−1

folds it, the folding point being the critical point c.
Let us now consider the case of a continuous two-dimensional map T : S → S, S ⊆ R

2,
defined by

T :
{
x ′
1 = T1(x1, x2)
x ′
2 = T2(x1, x2) ,

If we solve the system of these two equations with respect to the unknowns x1 and x2,
then, for a given

(
x ′
1, x

′
2

)
, we may have several solutions, representing rank-1 preimages (or

backward iterates) of
(
x ′
1, x

′
2

)
, say (x1, x2) = T−1

(
x ′
1, x

′
2

)
, where T−1 may be amultivalued

relation. In this case we say that T is noninvertible, and the critical set (formed by critical
curves, denoted by LC from the French “ Ligne Critique”) constitutes the set of boundaries
that separate regions of the plane characterized by a different number of rank-1 preimages.
According to the definition, along LC at least two inverses give merging preimages, located
on LC−1 see (Gumowski & Mira, 1980; Mira et al., 1996). For a continuous and (at least
piecewise) differentiable noninvertible map of the plane, with jacobian matrix

DT =
[

∂T1/∂x1 ∂T1/∂x2
∂T2/∂x1 ∂T2/∂x2

]

LC−1 is included in the setwhere the jacobian determinant detDT(x1, x2) changes sign, since
T is locally an orientation preserving map near points (x1, x2) such that detDT(x1, x2) > 0
and orientation reversing if detDT(x1, x2) < 0. In order to explain this point, let us recall
that when an affine transformation x′ = Ax + b, where A = {

ai j
}
is a 2 × 2 matrix and

b ∈R2, is applied to a plane figure, then the area of the transformed figure grows, or shrinks,
by a factor ρ = |det A|, and if det A > 0 then the orientation of the figure is preserved,
whereas if det A < 0 then the orientation is reversed.

If the map is continuously differentiable then the change of the sign of DT occurs along
points where DT vanishes, thus giving the characterization of the fold line LC−1 as the
locus where the jacobian vanishes. In fact, in any neighborhood of a point of LC−1 there
are at least two distinct points which are mapped by T in the same point. Accordingly, the
map is not locally invertible in points of LC−1, and the jacobian determinant vanishes as a
consequence of the implicit function theorem. Many of the considerations made above, for
1-dimensional and 2-dimensional noninvertible maps, can be generalized to n-dimensional
ones, even if their visualization becomes more difficult. This provides an easy method to
compute the critical set for continuously differentiable maps: from the expression of the
jacobian determinant one computes the locus of points at which it vanishes, then the set
obtained after an application of the map to these points is the critical set CS.

A discrete-time dynamical system, defined by the difference equation

xt+1 = T (xt )

can be seen as the result of the repeated application (or iteration ) of amap T . Indeed, the point
x represents the state of a system, and T represents the “ unit time advancement operator”
T : xt → xt+1. Starting from an initial condition x0 ∈ S, the iteration of T inductively
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defines a unique trajectory

τ(x0) = {
xt = T t (x0), t = 0, 1, 2, ...

}
,

where T 0 is the identity map and T t = T (T t−1). As t → +∞, a trajectory may diverge,
or it may converge to a fixed point of the map T , i.e. a point x such that T (x) = x, or it
may asymptotically approach another kind of invariant set, such as a periodic cycle, or a
closed invariant curve or a more complex attractor, for example a so called chaotic attractor
(see e.g. (Devaney, 1987),[20] and (Medio & Lines, 2001)). We recall that a set A ⊂ R

n is
invariant for the map T if it is mapped onto itself, T (A) = A, i.e. if x ∈ A then T (x) ∈ A.
A closed invariant set A is an attractor if the following two conditions hold: (i) for every
neighborhoodW of A there exists a neighborhood V of A such that T t (V ) ⊂ W ∀t ≥ 0; (ii)
a neighborhood U of A exists such that T t (x) → A as t → +∞ for each x ∈ U .

The basin of an attractor A is the set of all points that generate trajectories converging to
A

B (A) = {
x|T t (x) → A as t → +∞ }

(17)

Let U (A) be a neighborhood of an attractor A whose points converge to A. Of course
U (A) ⊆ B (A), and also the points that are mapped intoU after a finite number of iterations
belong to B (A). Hence, the basin of A is given by

B (A) =
∞⋃
n=0

T−n(U (A)) (18)

where T−1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x
by T ), and T−n(x) represents the set of the rank-n preimages of x (i.e. the points mapped
into x after n applications of T ).

Let B be a basin of attraction and ∂B its boundary. From the definition it follows that B
is trapping with respect to the forward iteration of the map T and invariant with respect to
the backward iteration of all the inverses T−1. In other words, points belonging to ∂B are
mapped into ∂B both under forward and backward iteration of T . This implies that if an
unstable fixed point or cycle belongs to ∂B then ∂B must also contain all of its preimages
of any rank. Moreover, if a saddle-point, or a saddle-cycle, belongs to ∂B, then ∂B must
also contain the whole stable set, i.e. all the points that generate trajectories that converge
to the saddle fixed point as t → +∞ (see (Gumowski & Mira, 1980; Mira et al., 1996) and
(Robinson, 2012)).

A problem that often arises in the study of nonlinear dynamical systems concerns the
existence of several attracting sets, each with its own basin of attraction. In this case the
dynamic process becomes path-dependent, i.e. which kind of long run dynamics characterizes
the system depends on the starting condition. This question requires an analysis of the global
dynamical properties of the dynamical system, that is, an analysis which is not based on
the linear approximation of the map. When the map T is noninvertible, its global dynamical
properties can be usefully characterized by using the formalism of critical sets, by which
the folding action associated with the application of the map, as well as the “ unfolding”
associated with the action of the inverses, can be described. Loosely speaking, the repeated
application of a noninvertible map repeatedly folds the state space along the critical sets
and their images, and often this allows one to define a bounded region where asymptotic
dynamics are trapped. As some parameter is varied, global bifurcations that cause sudden
qualitative changes in the properties of the attracting sets can be detected by observing
contacts of critical curves with invariant sets. On the other hand, the repeated application of
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the inverses “ repeatedly unfold” the state space, so that a neighborhood of an attractor may
have preimages far from it, thus giving rise to complicated topological structures of the basins,
that may be formed by the union of several (even infinitely many) non connected portions.
In fact, in order to study the extension of a basin and the structure of its boundaries one has
to consider the properties of the inverse relation T−1.The route to more and more complex
basin boundaries, as some parameter is varied, is characterized by global bifurcations, also
called contact bifurcations, due to contacts between the critical set and the invariant sets that
form the basins’ boundaries. So, it is clear that the properties of the inverses are important in
order to understand the structure of the basins and the main bifurcations which change their
qualitative properties. In the case of noninvertible maps, the multiplicity of preimages may
lead to basins with complex structures, such as multiply connected or non connected sets,
sometimes formed by (even infinitely) many non connected portions (see (Mira et al., 1996),
ch.5, (Abraham et al., 1997),ch.5).

Several examples of two-dimensional noninvertible maps that have non connected basins
can be found in the recent literature, see e.g. (Puu, 2000; Bischi & Kopel, 2001; Bischi et al.,
2003; Agliari et al., 2002) and (Agliari et al., 2004). Examples in three dimensions are given
in (Bischi et al., 2001) and (Agliari et al., 2002).
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