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Abstract
Bootstrapping time series is one of the most acknowledged tools to make forecasts and study the statistical properties of
an evolutive phenomenon. The idea underlying this procedure is to replicate the phenomenon on the basis of an observed
sample. One of the most important classes of bootstrap procedures is based on the assumption that the sampled phenomenon
evolves according to a Markov chain. Such an assumption does not apply when the process takes values in a continuous
set, as frequently happens for time series related to economic and financial variables. In this paper we apply Markov chain
theory for bootstrapping continuous processes, relying on the idea of discretizing the support of the process and suggesting
Markov chains of order k to model the evolution of the time series under study. The difficulty of this approach is that, even
for small k, the number of rows of the transition probability matrix is too large, and this leads to a bootstrap procedure of
high complexity. In many practical cases such complexity is not fully justified by the information really required to replicate
a phenomenon satisfactorily. In this paper we propose a methodology to reduce the number of rows without loosing “too
much” information on the process evolution. This requires a clustering of the rows that preserves as much as possible the
“law” that originally generated the process. The novel aspect of our work is the use of Mixed Integer Linear Programming
for formulating and solving the problem of clustering similar rows in the original transition probability matrix. Even if
it is well known that this problem is computationally hard, in our application medium size real-life instances were solved
efficiently. Our empirical analysis, which is done on two time series of prices from the German and the Spanish electricity
markets, shows that the use of the aggregated transition probability matrix does not affect the bootstrapping procedure,
since the characteristic features of the original series are maintained in the resampled ones.

Roy Cerqueti, Università degli Studi di Macerata.

E-mail: roy.cerqueti@unimc.it.
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1 Introduction

After the seminal paper by Efron (1979), several developments and applications of bootstrap methods
appeared in the literature. Bootstrap methods following the original idea by Efron and based on re-
sampling of model errors have been largely applied in Economics and Finance. The reader is referred
to Freedman (1984), Freedman and Peters (1984), Efron and Tibshirani (1993) for a methodological
discussion and to Brock et al. (1992), Sullivan et al. (1999) for an application to financial markets.
However, the original approach of Efron suffers, in general, of model miss-specification risk and requires
observations to be time independent. To overcome such limitations, nonparametric, model-free bootstrap
methods have been proposed in the literature. In Bühlmann (2002) several bootstrap methods of this
type are compared, such as the block, the sieve, and the local methods. The advantage of nonparametric,
model-free methods is that they do not require the observations to be time independent: data themselves
capture the dependency structure of the time series, thus relieving the researcher of the responsibility
of choosing a model. Among the nonparametric bootstrap methods, a relatively recent group appeared
in the literature which is based on Markov chain theory (see, e.g., Anatolyev and Vasnev, 2002). The
major issue in this research area is the estimation of the true dimension of the transition probability
matrix, which, in turn, consists of estimating the relevant states and the order of the process, that is, the
length of its “memory”. Even if these two estimates refer to different objects, they are not completely
independent. They have been intensively examined in the area of Information Theory to model alphabet
processes (see, for example, Bühlmann and Wyner, 1999; Bühlmann, 2002; Zhu et al., 2002). Brilliant
applications, such as efficient data compression, have been obtained therein. However, these studies
concern only discrete processes and, since discrete states are usually considered equally relevant in such
literature, the main issue has been to estimate the true order of a Markov chain. It must be pointed out
that, in some cases, the order k of a Markov process is specified in advance, depending on the observed
series. This may cause that the number of rows in the transition probability matrix is too large w.r.t.
the information contained in each single row. In this case, one would like to reduce the number of rows
without loosing too much information about the process evolution. In Zhu et al. (2002) the problem is
solved by searching for a suitable clustering of the rows of the matrix, putting together the rows which
are “similar”. Their application relies on the compression algorithm devised by Spears (1998) for square
transition probability matrices.
When the process is continuous, the above approach does not apply. Nevertheless, a novel application
of Markov chain theory for bootstrapping continuous processes was proposed in the literature. The
importance of this application is mainly due to the increasing interest in the economic and financial
areas, for modeling continuous valued processes as “Markov switching regimes” (see, e.g., Hamilton,
1996; Jeanne and Masson, 2000; Hamilton, 2005). This kind of processes shows different evolutive
features depending on which regime characterizes a given period. In such models, identifying the states
that significantly influence the evolutive properties of the process is as important as estimating the correct
length of its memory. From a complexity viewpoint, if a Markov chain with n states is supposed to have
a memory of k time lags, the number of possible paths driving the evolution of the process is nk, which
increases exponentially with k. Such paths correspond to the rows of the transition probability matrix,
whose size therefore increases exponentially with k, as well. Following Zhu et al. (2002), in Cerqueti
et al. (2009) the authors developed the idea of clustering the rows of the transition probability matrix
to reduce its dimension and yet preserving as much as possible the “law” that generated an observed
path. They state an optimization problem in which, given a memory of k time lags, the set of the
nk rows is partitioned into q ≤ nk classes by minimizing a distance indicator between rows which is
based on the corresponding transition probabilities. The main difficulty of this approach is related to the
computational complexity for solving the optimization problem. In fact, the proposed solution method
relies on complete enumeration which cannot be applied in real situations, even if the authors provide a
pre-processing that drastically reduces the size of the solution space1. Partitioning problems are among
the most studied in Operations Research (see, e.g., Anily and Federgruen, 1991). In the large majority
of cases these problems have been solved by means of heuristic algorithms, like the k-means algorithm
introduced by Forgy (1965) and MacQueen (1967), graph-theoretic approaches to data clustering (see,
e.g., Ricca et al., 2008; Wu and Leahy, 1993, and references therein), Tabu Search-based heuristics (see,

1The size of the solution space is reduced from B
(
nk

)
to [B (n)]k, where B (i) is the Bell number of i.
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e.g., Cerqueti et al., 2011; Ricca and Simeone, 2008), Ant Colony algorithms as in Trejos et al. (2004),
evolutionary algorithms (see, Ma et al., 2006), block diagonal matrix decompositions (see, Courtois,
1977).
In this paper we are interested in the practical solution of the problem of partitioning the set of rows of
the transition probability matrix of a Markov process of (fixed) order k, the final aim being to exploit
the optimal partition in the corresponding bootstrap procedure. We propose a new Mixed Integer Linear
Programming formulation for the above partitioning problem that can be solved via common optimization
packages, like CPLEX2. This allows to efficiently solve problems where the number of rows of the matrix
ranges from 40 to 60, which corresponds to the typical size of some economic and financial phenomena.
As an application of this method we consider the problem of bootstrapping the series of the Spanish and
German electricity prices observed daily for 6 and 7 consecutive years, respectively.
The paper is organized as follows. In Section 2, we discuss in detail Markov chain bootstrapping and
describe the Mixed Integer Linear Programming model proposed for partitioning the rows of a transition
probability matrix. Section 3 is dedicated to the application of our approach to real-life problems: after
the description of the available datasets, we illustrate our results providing a statistical analysis of the
bootstrapped series which are compared to the original ones. In Section 4, we collect some final thoughts
and concluding remarks.

2 Markov chain bootstrapping based on Mixed Integer Linear
Programming

In this section we introduce the Markov chain resampling problem and propose an optimization approach
to solve it. The basic ideas underlying the problem are first introduced, together with the corresponding
notation and definitions.
Consider a time-varying phenomenon. Under the hypothesis that the phenomenon evolves according to
a k-th order Markov chain (X(t), t ≥ 0), our aim is to resample it through a bootstrap procedure. The
estimation of the transition probability matrix associated to (X(t), t ≥ 0) relies on an available time-
ordered sample of observations of the investigated phenomenon.
In resampling procedures, two aims are pursued which are somehow conflicting: on the one hand, the exact
replication of the sample at each simulation should be avoided (diversification or multiplicity criterion);
on the other hand, the statistical properties of the original sample should be reproduced as much as
possible in the replications (similarity criterion). In order to generate a bootstrapped series satisfying
the two above properties, we proposed a method based on the aggregation of the rows of the transition
probability matrix of (X(t), t ≥ 0). The problem is formulated as a partition problem of the st of rows
of the transition probability matrix, and it is modeled as a Mixed Integer Linear Program (MILP).

2.1 Notation and definitions

Assume that the possible realizations of an evolutive phenomenon vary in an interval [α, β] ⊆ R. Con-
sider the following series of time-ordered realizations of the phenomenon observed in the time horizon
(1, . . . , t, . . . , T ):

e(T ) = (e1, . . . , et, . . . , eT ). (1)

We will also refer to T as the length of the observed series. Let [b0, b1), . . . , [bz−1, bz), . . . , [bn−1, bn] be a
partition of [α, β] into n intervals such that b0 = α and bn = β. In order to simplify the notation, we
refer to the z-th interval [bz−1, bz) as αz. This is only a matter of notation, and αz is not meant to be a
single point replacing the whole interval [bz−1, bz). One has:

{
αi ∩ αj = ∅, i, j = 1, . . . , n, i 6= j⋃n

z=1 αz = [α, β].

We collect the elements of such partition in a set A = {α1, . . . , αz, . . . , αn} so that A represents the set of
all possible states for the time-ordered series under analysis. States in the set A are called theoretical. We

2www.ibm.com/software/integration/optimization/cplex-optimizer/.
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will refer to the above partition of [α, β] as the initial partition. A state corresponds to one of the intervals
αz, z = 1, . . . , n, which are then called the initial intervals or initial states. The choice of adopting the
term “state” is taken to refer explicitly to the Markov chain framework described later in this section.
Relying on the above discretization, one has that, for any observed value et (point), there is a unique αz

(interval) in A such that et ∈ αz. As a consequence, a time series as (1) will be represented as a sequence
of states of a Markov chain a(T ) = (a1, . . . , at, . . . , aT ), where at = αz when et ∈ αz, for z = 1, . . . , n.
Given the set A of the initial states, for a fixed k the Cartesian product Ak collects all the k-tuples formed
by states in A which we then call theoretical k-states. Thus, given states αz ∈ A, z = 1, . . . , n, we denote
a generic theoretical k-state by αh(k) = (αhk

, αhk−1 , . . . , αh1), with hw ∈ {1, . . . , |A|} and w = 1, . . . , k.

We denote a sequence of k < T consecutive elements extracted from e(T ) as:

e(t̃, k) = (et̃, . . . , et̃+j , . . . , et̃+k−1) for some t̃ ∈ {1, . . . , T − k + 1}. (2)

Notice that in formula (2) e(t̃, k) depends on two parameters, namely, the length k of the above se-
quence and t̃, which identifies the starting time of the sequence. An observed k-state (or simply k-
state) a(t̃, k) is the sequence of the k observed states corresponding to e(t̃, k). More precisely, a(t̃, k) =
(at̃, . . . , at̃+j , . . . , at̃+k−1) is obtained by setting at = αz when et ∈ αz, for t ∈ [t̃, t̃ + k − 1].

Let Ok denote the set of observed a(t̃, k), that is

Ok =
{

a(t̃, k), t̃ ∈ {1, . . . , T − k + 1}
}

,

for which one has |Ok| = T − k + 1.
Assume that the evolutive phenomenon is modeled as a Markov chain of order k ≥ 1, (X(t), t ≥ 0), with
state space A. Then, the k-th order transition probability matrix is estimated by using the definition of
Ching et al. (2008), which involves the estimation of the empirical frequencies.

We introduce the transition probability for the process to reach state αz immediately after the sequence
of states in αh(k), that is:

µ
(k)

αh(k),αz
= Prob(X(t) = αz|X(t− 1) = αh1 , . . . , X(t− k) = αhk

). (3)

Let us denote by M the k-th order transition probability matrix, with |Ak| = nk rows and |A| = n
columns. To avoid a cumbersome notation, we set nk = m. Matrix M is built starting from the observed
sample e(T ) and its generic entry (h, z) contains the value µ

(k)

αh(k),αz
corresponding to k-state αh(k) in

Ak and state αz in A.

According to the approach in Ching et al. (2008), we estimate µ
(k)

αh(k),αz
as follows3:

µ
(k)

αh(k),αz
=





Λ(αh(k),αz)∑n
j=1 Λ(αh(k),αj)

if
∑n

j=1 Λ(αh(k), αj) 6= 0

0 otherwise
, (4)

where

Λ(αh(k), αz) =
∣∣∣

T−k⋃

t̃=1

{a(t̃, k + 1) ∈ Ok+1 : a(t̃, k + 1) ≡ (αh(k), αz)}
∣∣∣ (5)

is the number of times that a sequence (αh(k), αz) has been observed in the sample.
For a given k, each row of the transition probability matrix M contains the transition probabilities from
a k-state αh(k) ∈ Ak to the states αz ∈ A. Formula (4) is used to compute M on the basis of the original
sample. Notice that, when a k-state is observed only once in the original series e(T ), the estimation
of its transition probabilities is equal to 1 for the unique state to which the corresponding trajectory

3For the sake of simplicity, we avoid introducing here a specific notation for the estimates of the probabilities.
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evolved, while it is equal to 0 for all the other states. We refer to this case as deterministic k-states,
and the corresponding rows of the transition probability matrix are called deterministic rows. Each
row not completely filled with zeros reports the estimated probabilities from an observed k-state to an
observed state, which substantially means that only sequences αh(k) such that αh(k) ≡ a(t̃, k) for some
t̃ ∈ {1, . . . , T − k + 1} and states αz ≡ at for some t ∈ {1, . . . , T} are considered.

To introduce our MILP model, in the following we indifferently refer to αu(k) and αv(k) of Ak and to
the corresponding rows, u and v respectively, of matrix M . Similarly, we will indifferently refer to the
set Ak and to the corresponding set of rows V of matrix M .
A simple dissimilarity measure between pairs of rows u and v of M can be defined as follows:

duv =
n∑

z=1

∣∣∣µ(k)
αu(k),αz

− µ
(k)
αv(k),αz

∣∣∣. (6)

It is easy to check that this dissimilarity measure takes values in the interval [0, 2] (see Cerqueti et al.,
2009). As we will argue below, the dissimilarity duv can be viewed as a proxy for the “cost” of putting
k-states αu(k) and αv(k) together, i.e. in the same class of a partition.

2.2 An optimization approach to the aggregation of the rows of a transition
probability matrix

Let us introduce our partitioning problem of the set V of the rows of the transition probability matrix
M . Consider a partition of V into q classes, π = {C1, . . . , Cp, . . . , Cq}, with 1 ≤ q ≤ m, and let Π be the
set of all possible such partitions.
The diameter of a class Cp is defined as the maximum dissimilarity between two elements in Cp, and it
is denoted by δ(Cp):

δ(Cp) = max
u,v∈Cp

duv. (7)

The diameter of a partition π ∈ Π is defined as

∆(π) = max
Cp∈π

δ(Cp).

Formula (7) suggests that in the particular case of a class Cp including only one element we have δ(Cp) = 0,
since duu = 0 for each u ∈ V .
For a given π ∈ Π, we denote by Cp̄ a class for which ∆(π) = δ(Cp̄), that is:

Cp̄ ∈ argmax{δ(Cp), Cp ∈ π}.

In our partitioning problem we want to minimize both the number of classes and the diameter of the
partition. These two objectives are obviously in conflict, since the diameter of a partition tends to
increase when the number of its classes decreases and vice versa. In fact, we are faced with a bi-objective
problem which we handle by minimizing the diameter of the partition while controlling for the number
of its classes. In fact, we introduce in the model a parameter γ ≥ 0 for bounding the value of the
diameter ∆(π) from below, which implies a constraint on the cardinality of the partition. By means of γ
we implement a control in the resampling procedure to meet the multiplicity criterion, i.e., to avoid the
exact replication of the original sample. Hence, given a fixed value γ ≥ 0 and an integer 1 ≤ q ≤ m, we
formulate the following partitioning problem:

among all the possible partitions π ∈ Π of V with at most q classes and such that δ(Cp̄) is at least equal
to γ, find a partition π∗ that minimizes ∆(π).

The problem can be formulated as a Mixed Integer Linear Program, which we illustrate in the following.

To formalize the optimization model, let us observe that a partition π = {C1, . . . , Cp, . . . , Cq}, with
1 ≤ q ≤ m, can be equivalently written as π = {C1, . . . , Cp, . . . , Cm}, with

{
Cp 6= ∅, for p = 1, . . . , q
Cp = ∅, for p = q + 1, . . . ,m

. (8)
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Definition 1. Given a partition of V , π = {C1, . . . , Cp, . . . , Cm}, the cluster Cp is active if and only if
Cp 6= ∅.
Let v ∈ V be a generic row of matrix M . We introduce the binary variables xvp and yp, with p = 1, . . . , m,
such that:

xvp =
{

1, if row v belongs to cluster Cp

0, otherwise ,

yp =
{

1, if cluster Cp is active
0, otherwise .

Consider now u, v ∈ V . It is easy to see that the product xup · xvp is equal to 1 if and only if the rows u
and v belong to the same cluster Cp of the partition:

xup · xvp =
{

1, if both u and v belong to cluster Cp

0, otherwise. .

Hence, the cost of assigning both u and v to cluster Cp is given by:

duv · xup · xvp.

With this notation, the diameter of cluster Cp can be rewritten as δ(Cp) = max
u,v∈V

{duv · xup · xvp}. The

problem of finding the partition of the set of rows V into at most q classes that minimizes the maximum
diameter of a cluster can be formulated as follows:

min
π∈Π

max
Cp∈π

max
u,v∈V

{duv · xup · xvp}

(1)
m∑

p=1
xvp = 1 ∀ v ∈ V

(2) xvp ≤ yp ∀ v ∈ V , p = 1, . . . , m

(3)
m∑

p=1
yp ≤ q

xvp, yp ∈ {0, 1} ∀ v ∈ V , p = 1, . . . ,m.

(9)

Notice that in the above formulation we bound the number of classes of the partition by q. Thus, varying
q in {1, . . . , m} allows us to tackle the bi-objective problem as a sequence of m single-objective ones. In
problem (9) the first set of constraints states that each row must belong to only one class of the partition.
According to constraints (2), a row can belong to a class Cp only if Cp is active. Constraint (3) provides
an upper bound on the number of classes of π. Problem (9) is an integer nonlinear program which can
be linearized by introducing additional association variables wuvp, with 0 ≤ wuvp ≤ 1:

wuvp = xup · xvp =
{

1, if both u and v belong to cluster Cp

0, otherwise ,

and the following set of constraints:

wuvp ≤ xup ∀ u, v ∈ V , p = 1, . . . , m

wuvp ≤ xvp ∀ u, v ∈ V , p = 1, . . . , m

wuvp ≥ xup + xvp − 1 ∀ u, v ∈ V , p = 1, . . . , m.

(10)

Thus, if both u and v belong to cluster Cp one has xup = xvp = 1, and therefore wuvp = 1. On the other
hand, if either xup = 0 or xvp = 0 one has wuvp = 0, too. This also implies that the bounds wuvp ≤ 1 are
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always satisfied, and hence they need not to be included explicitly in the problem formulation. Notice
that constraints (10) guarantee that variables wuvp assume only values 0 or 1, and, therefore, they can
be introduced in the model as real variables.
The objective function can be written in terms of the new variables as follows:

min
π∈Π

max
Cp∈π

max
u,v∈V

{duv · wuvp}.

Then, the objective function can be linearized introducing a new variable d which replaces the expression
max
u,v∈V

{duv · wuvp} and adding the following set of constraints:

duv · wuvp ≤ d, ∀ u, v ∈ V , p = 1, . . . , m.

Let us notice that the above model does not prevent the optimal objective function value to become
very small (it may even turn out to be 0). We recall that the core of the bootstrap procedure is to
generate resamplings of the observed series e(T ) which must be sufficiently “similar” to e(T ), in order to
guarantee that they can be seen as different realizations of the same phenomenon which also generated
e(T ). However, they must be also sufficiently “diversified” from e(T ), in order to have some degree
of “variability” among them. The optimal partition applied to M should then be structured so as to
guarantee these requirements as much as possible. If, on the one hand, similarity is pursued in the model
via the minimization of the diameter, on the other hand, diversification can be controlled by imposing
the diameter to be not smaller than a prefixed threshold γ. This additional constraint prevents from
choosing the trivial singleton partition, where each class is formed by a single element. In fact, for this
partition, the value of the objective function is zero, but no aggregation of the rows of M is actually
performed.
In order to formalize the additional condition related to the threshold γ, we introduce the binary variables
tγuvp defined as follows:

tγuvp =
{

1, if duv · wuvp ≥ γ
0, otherwise ∀ u, v ∈ V , p = 1, . . . , m.

Adding further suitable constraints involving tγuvp and γ, we obtain the MILP for our specific partitioning
problem:

min d

(1)
m∑

p=1
xvp = 1 ∀ v ∈ V

(2) xvp ≤ yp ∀ v ∈ V , p = 1, . . . ,m

(3)
m∑

p=1
yp ≤ q

(4) wuvp ≤ xup ∀ u, v ∈ V , p = 1, . . . , m
(5) wuvp ≤ xvp ∀ u, v ∈ V , p = 1, . . . , m
(6) wuvp ≥ xup + xvp − 1 ∀ u, v ∈ V , p = 1, . . . , m

(7) duv · wuvp ≤ d ∀ u, v ∈ V , p = 1, . . . , m
(8) duv · wuvp ≥ tγuvp · γ ∀ u, v ∈ V , p = 1, . . . , m

(9)
m∑

p=1

∑
u,v∈V

tγuvp ≥ 1

xvp, yp ∈ {0, 1}, tγuvp ∈ {0, 1} ∀ u, v ∈ V , p = 1, . . . , m

d ≥ 0, wuvp ≥ 0 ∀ u, v ∈ V , p = 1, . . . ,m.

(11)
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In the above model, constraints (7)-(8) describe the relation between the variables w and the new variables
tγ . Constraint (9) forces at least one variable tγ to be equal to 1, thus guaranteeing that the diameter of
the optimal partition is at least γ.

2.3 Bootstrap procedure

In the following, we describe the bootstrapping procedure based on the optimal partition π∗ of model
(11). The algorithm takes as inputs π∗ and the aggregated transition probability matrix M∗ associated
to π∗, as well as, the observed time series e(T ) = (e1, . . . , et, . . . , eT ), and it returns a resampled series.
It is not required that the resampled series and the original one have the same length. We denote by `
the length of a resampled series (that we fix in advance), and by x(`) = (x1, . . . , x`) the time ordered
sequence of its values.
The optimality of π∗ should guarantee that, although generated through a coarser structure of the infor-
mation in the aggregated transition probability matrix M∗, a resampled series maintains simultaneously
a good statistical similarity w.r.t. the original sample and a satisfactory diversification from other resam-
pled series.

We briefly present the main steps of the bootstrapping procedure, listed in the following pseudo-code,
where we use the notation a(t̃, k) ∈ C to denote that the sequence of states in a(t̃, k) belongs to class C
of partition π∗. The main step of the algorithm concerns the (random) choice of a k-state among those
belonging to a given class of π∗.
To avoid the rare but not impossible case of a premature stop of the bootstrap procedure, the last k-state
observed in e(T ) is excluded from the random choice if it has never been observed before.
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—————————————————————————————————————————–
algorithm: BOOTSTRAP(π∗,M∗, e(T ), `)

—————————————————————————————————————————–
input: The optimal partition π∗, the corresponding transition probability matrix M∗,
the observed series e(T ) of at least 2k + 1 observations, and an integer number ` ≥ k + 1.
output: A resampled series x(`) = (x1, . . . , x`).
—————————————————————————————————————————–
1. begin
2. Let e(k + 1, k) = (ek+1, . . . , e2k) be the k elements of e(T ) observed at times k + 1, . . . , 2k.
3. Set (x1, . . . , xk) := (ek+1, . . . , e2k).
4. for j = 1 to `− k do
5. Consider (xj , . . . , xj+k−1)

and the corresponding sequence of states a(j, k) = (aj , . . . , aj+k−1).
6. if a(j, k) ∈ Ok

7. Let C be the class of π∗ including a(j, k).
Based on M∗ randomly choose one of the k-states belonging to C
among those that have passed the absolute continuity filter.

8. Let a(τ̄j , k) be the selected k-state.
9. Set xj+k := eτ̄j+k.
10. else
11. Set r := 1.
12. Consider (xj+r, . . . , xj+k−1)

and the corresponding sequence of states a(j + r, k − r) = (aj+r, . . . , aj+k−1).
13. if a(j + r, k − r) ∈ Ok−r

14. Among all the (k − r)-states a(τ, k − r) = a(j + r, k − r),
select uniformly one, say a(τ̄j+r, k − r).

15. Set xj+k := eτ̄j+r+(k−r).
16. else
17. Set r := r + 1 and go to step 12.
18. end if
19. end if
20. end for
21. end
—————————————————————————————————————————–

In steps 2.-3., the first k resampled values (x1, . . . , xk) are initialized to the k observations ek+1, . . . , e2k in
the original series e(T ). Although the estimation of the transition probability matrix M∗ was performed
on all the values of the original series, we exclude from the bootstrap procedure the first k observed values
in e(T ), e1, . . . , ek. Indeed, none of these values can represent the possible evolution of a k-state, because,
by construction, it is not possible to identify a whole k-state preceding each of the values e1, . . . , ek.

The other `−k resampled values are obtained in the loop performed in steps 4.-20. In particular, relying
on the optimal partition π∗, steps 5.-9. generate the (k+j)-th value of the series when the last resampled
k-state a(j, k) is one of those observed (i.e., it belongs to Ok) as follows: suppose that C is the class
of π∗ which a(j, k) belongs to. The algorithm first selects the k-states belonging to C that have passed
the “absolute continuity filter” and, then, to obtain the next resampled value, it performs a random
choice that is respectful of the transition probabilities of class C contained in M∗. To this purpose, we
follow uniform resampling from the k-states included in class C (net of the filtering mentioned before).
Although the technique is a standard one, the following example briefly illustrates how it works.

Example. Consider the observed series a(T ) = {1, 3, 3, 3, 1, 3}, with T = 6, and for which O2 =
{(1, 3), (3, 3), (3, 3), (3, 1), (1, 3)}. Suppose that the class C of π∗ is formed by the 2-states (1, 3) and
(3, 3). According to formula (4), in M∗ the probabilities of evolving from class C to the three states
α1 = 1, α2 = 2 and α3 = 3 are 1/3, 0, and 2/3, respectively, since the observed 2-state (1, 3) evolved to
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3, as well as one of the two observed 2-states (3, 3), while the other observed 2-state (3, 3) evolved to 1.
2

The absolute continuity filter is a statistical tool used here to exclude from the selection those k-states of
C that have transition probabilities not “absolutely continuous” w.r.t. those of a(j, k). More specifically,
suppose that the k-state generated by the procedure, say a(j1, k), belongs to the same class of another
k-state, say a(j2, k). Then, the procedure considers a(j2, k) for possible selection only if its transition
probability is absolutely continuous4 w.r.t. the one of a(j1, k), i.e.

Prob (az|a(j1, k)) = 0 ⇒ Prob (az|a(j2, k)) = 0, z = 1, . . . , n. (12)

This device is meant to prevent (even if it is not guaranteed) the generation of resampled series that
evolve following sequences of states that have never been observed.

Steps 10.-19. are designed to handle the generation of a new resampled value when a k-state that has not
been observed in Ok arises. In fact, in such cases, relying only on M∗, we would not be able to extract the
next value for the resampled series. To get over such hurdles, we resort to a local “reduction of memory”
that amounts to progressively reducing the order of the Markov chain until, for some r, a (k − r)-state
is observed in Ok−r. Let a(τ̄j+r, (k − r)) be the observed (k − r)-state, the next resampled value is set
equal to eτ̄j+r+(k−r). Notice that, since we do not compute transition probabilities for (k − r)-states, for
this local step we perform a random uniform selection among all the (k − r)-states in Ok−r showing the
same sequence of states as a(τ̄j+r, (k − r)).

3 Application and results

In this section we describe an experimental application of our bootstrapping method. It relies on data
taken from the Spanish and German electricity markets which we are going to describe in detail in the
following. The analyzed series show several interesting features which make them difficult to treat for a
bootstrapping method, therefore they represent challenging tests for evaluating the performance of our
new approach.

3.1 Data

In our application we study two time series, namely the “Mibel Spanish Electric System Arithmetic
Average Price” and the German “EEX Phelix Day Base Price”. The series have been observed daily in
the period from January 1st, 1998 to December 31st, 2003 (Spain) and from June 17th, 2000 to May
8th, 2007 (Germany). The prices are expressed in euros and refer to 1 MWh. The Spanish time series
consists of T = 2190 observations, while for the German series we have T = 2517.
Figures 1 and 2 show the two time series which are characterized by the following features:

- a weekly and annual seasonality;

- a slightly positive trend;

- stochastic volatility;

- nonlinear dependency of data;

- two clear regimes of prices: normal trading and occasional spiking periods.

Spikes are occasional, since they usually correspond to unexpected shortages on the supply side of the
electricity system, or unexpected and temporary increases of the demand (e.g., sudden meteorological
events driving to high consumption). Since our data consist of daily data, intra-day seasonality is ne-
glected in this analysis. Because of the joint presence of such features, in the literature, electricity price

4In probability theory, a probability µ is said absolutely continuous w.r.t. a probability ν if, for every event B, one has
µ (B) = 0 whenever ν (B) = 0.
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Figure 1: Spanish daily electricity prices.
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Figure 2: German daily electricity prices.
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Figure 3: Spanish daily electricity prices without exponential trend and exponential weekly seasonality.
Horizontal lines mark the extremes of the intervals α1, . . . , α12.

series are usually considered as “hard to model” cases. For a review of the difficulties in modeling elec-
tricity prices and the methods developed to solve them, see, for example, Bunn (2004), Huisman and
Mahieu (2003), Weron et al. (2004), and Weron (2006). Raw data prices have been removed of an
(exponential) weekly seasonal component as well as of an (exponential) trend. Two main reasons justify
this pre-treatment. Removing the weekly seasonality lets us free to reduce the order of the Markov chain
below 7, which corresponds to a great reduction in the complexity of our problem. The removal of the
trend component makes the series more stationary. Of course both components are added back to the
bootstrapped series. The estimation of exponential (rather than linear) components is recommended to
avoid that this removal/reintroduction process generates occasional negative prices. In Appendix A we
give the details about this data treatment.

3.2 Preliminary segmentation of the support

As already explained in Subsection 2.1, to discretize our continuous valued process, a preliminary seg-
mentation of the support [α, β] is performed by partitioning it into n initial intervals α1, . . . , αz, . . . , αn.
In our application we set n = 12 which corresponds to an order of magnitude larger than the number of
states commonly considered in the literature for the regimes of electricity prices (usually 2 or 3, see, e.g.,
Huisman and Mahieu, 2003).

The segmentation of the support into 12 initial states was performed through the minimum-variance
clustering procedure provided in Ward (1963), after having removed trend and weakly seasonality from
the original series (see, Appendix A for further details). Figures 3 and 4 show the series of Spain and
Germany, together with the initial 12 intervals α1, . . . , α12 (separated by horizontal lines). Appendix B
details this preliminary segmentation.
The transition probability matrices MS and MG of order k = 2, estimated for the Spanish (S) and
German (G) markets, respectively5, were computed using formula (4).
The set of observed 2-states, O2, is composed by 2188 elements for the Spanish instance and 2515 elements

5They are available at the web address: http://chiara.eco.unibs.it/˜pelizcri/Partitioning.html.
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Figure 4: German daily electricity prices without exponential trend and exponential weekly seasonality.
Horizontal lines mark the extremes of the intervals α1, . . . , α12.

for the German one6. The percentage of deterministic 2-states over all the observed ones is about 1% in
both cases (23 for Spain and 21 for Germany). The remaining observed 2-states are probabilistic (2165
for Spain and 2494 for Germany). In partitioning the rows of the transition probability matrices MS

and MG, we actually consider only the probabilistic 2-states. On the other hand, we define a priori a
single class collecting all the non observed 2-states, while we set up as many classes as the number of
observed deterministic 2-states. For n = 12 we obtain 63 and 44 non deterministic rows in the transition
probability matrix of Spain and Germany, respectively, while the deterministic rows are 19 in both cases.

3.3 Optimization phase

The central element in the optimization model is given by parameter γ ≥ 0. This parameter provides a
lower bound on the minimum distance between two rows belonging to the cluster with maximum diameter
in an optimal solution. Fixing γ to a positive value guarantees some degree of diversity between the rows
of such a cluster, and one can be sure that at least one cluster of the partition is not formed by a single
row. When γ = 0, no bound is imposed on the objective function value, so that the trivial singleton
partition corresponding to one row per class can be always obtained as the optimal solution, provided
that the maximum number of clusters q is large enough (it suffices to set q = m). Since the optimal
value of the singleton partition is always 0, it can be considered as the partition with maximum similarity
within clusters7, and, therefore, it can be taken as a benchmark for the evaluation of the partition finally
chosen to perform the bootstrapping procedure.
Following the solution approach illustrated in Subsection 2.2, for γ we tested a finite number of values
equally spaced in the interval (0, 2). This is a standard practice adopted when significant values have to
be tested for a parameter ranging in a continuous interval. However, it must be noticed that, in our case,
the values of γ that one can actually consider for a given dataset depend on the dataset itself. In fact,
since the maximum distance between two rows of the transition probability matrix is given, our MILP

6For both Spain and Germany the last observed 2-state is excluded from the computation of the cardinality of O2.
7Actually, in this case, no aggregation at all is performed on the rows of the transition probability matrix.
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Table 1: Summary of the results of the MILP model for the two datasets. The number of classes
corresponds to the smallest value of q for which the optimal objective function value can be attained.

γ Spain Germany
Objective function value Number of classes Objective function value Number of classes

0.50 0.50 52 0.50 23
0.75 0.75 49 0.75 16
1.00 1.00 40 1.00 8
1.25 1.257 30 1.428 5
1.50 1.50 25 1.50 5

model turns out to be infeasible for all values of γ greater than this maximum. For the two analyzed
datasets, we tested the following values of γ: 0.5, 0.75, 1, 1.25, 1.5. For each value of γ, we applied our
MILP model with increasing values for the integer parameter q that corresponds to the maximum number
of clusters of the partition, i.e. q = 2, 3, . . . , m−1. As q increases, we observe a converging process towards
a stable optimal value of the objective function. Thus, taking into account that our original partition
problem is a bi-objective one, for any fixed γ, among the optimal partitions provided by the MILP model
for different values of q, the best choice is to select the partition with the minimum objective function
value (similarity criterion) and the smallest q (multiplicity criterion). Since in the model we minimize
the maximum diameter of a cluster d, and γ is a lower bound for d, the ideal case would be attaining
such a bound. In our experiments, we obtained this result in 8 out of 10 cases, and we got very close to
γ in one of the other two. In Table 1, for each dataset and value of γ, we report the optimal value of the
objective function and the smallest q for which such value can be attained.
Solving the MILP model for a single value of q and fixed γ required a reasonable computational time (less
than 3 hours) for the German series. A major effort was performed for solving the case corresponding
to the Spanish series, which leads to a much larger MILP than in the German case. Indeed, for a given
value of q and γ, an average of 10 hours was necessary to get the optimal solution in all cases but one for
which, however, after a time limit of 20 hours, we found a best solution value of 1.257, which is very close
to the lower bound γ = 1.25 (see Table 1). For the model solution we used the well-known optimization
software AMPL8. The experiments have been carried out on a cluster of two machines, each equipped
with two Quad-Core Xeon E5520 processors with 2,26Ghz clock rate and 48 GB RAM.
Based also on the results reported in Table 1, and on the statistical analysis of the resampled series in
the following subsection, the choice of γ = 0.5 seems to be particularly reasonable when performing the
bootstrap procedure. Indeed, in this case, the 5000 series simulated to assess the performance of our
bootstrapping procedure reflect in a rather satisfactory manner the statistical properties of the original
sample. As for the diversity among the generated series, when the value of γ = 0.5 is adopted, a
very low probability of duplication over the 5000 tested cases is observed. Then, for each dataset, we
selected the optimal partition corresponding to γ = 0.5 for the bootstrap procedure. We denote them
by πmilp

S and πmilp
G , for the Spanish and German dataset, respectively, while Mmilp

S and Mmilp
G indicate

the corresponding 2nd order aggregated transition probability matrices9. The two singleton partitions
obtained for γ = 0 and q = m are denoted by πS and πG, respectively.
Partition πmilp

S consists of 72 classes (19 of which correspond to deterministic 2-states, and one contains
all the non observed 2-states). Partition πmilp

G has 43 classes (19 of which correspond to deterministic
2-states, and one contains all the non observed 2-states).

3.4 Statistical analysis of the resampled series

For each market (Spain and Germany), we evaluate the performance of our bootstrap procedure in two
different scenarios:

8www.ampl.com.
9These matrices are available at the web address http://chiara.eco.unibs.it/˜pelizcri/Partitioning.html.
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Figure 5: Bootstrapped Spanish electricity prices. The thin mark indicates that the selected value is the
ending point of an observed probabilistic 2-state, the thick mark indicates that the bootstrapped values
are the last points of observed deterministic 2-states.

i. a “conservative” scenario, where we consider the two partitions of singletons πS and πG, which rep-
resent the benchmark situation of minimum multiplicity and maximum similarity for the generation
of the bootstrapped series;

ii. a “progressive” scenario, where we consider the two partitions πmilp
S and πmilp

G (γ = 0.5), which
are expected to generate higher diversification and lower similarity among the bootstrapped series
than πS and πG.

We generated 4 sets of 5000 bootstrapped series (one set for each partition) with length ` = 2188 for the
Spanish case and ` = 2515 for the German one. In the following, we analyze the statistical properties of
the bootstrapped series in order to compare them with the ones of the original series.
Before introducing the indices, we want to give an idea of how the bootstrapped series look like. Figures
5 and 6 report two bootstrapped series, one for the Spanish market and one for the German instance,
based on partitions πmilp

S and πmilp
G . Here, the bootstrapped series include the exponential trend and the

exponential weekly seasonality initially removed from the original samples (see Appendix A). Each value
of the series is classified as deterministic (thick mark) or probabilistic (thin mark).
We can make the following considerations:

- both the bootstrapped series in Figures 5 and 6 reproduce the spikes observed in the original series
(see, Figures 1 and 2);

- also the normal trading regime appears satisfactorily reproduced. Indeed, the two series take values
in ranges strongly overlapping those of the original one;

- weekly seasonality is clearly distinguishable, as well as, a slightly positive trend;

- the frequency of deterministic values is 1% for both the Spanish and German cases, similarly to
the values observed in the original series. The bootstrap procedure probabilistically reproduces
sequences of the original series and occasionally such segments are interleaved by deterministically

14



0

40

80

120

160

200

240

280

320

360

1

2
5
1

5
0
1

7
5

1

1
0

0
1

1
2

5
1

1
5

0
1

1
7
5

1

2
0
0

1

2
2
5

1

2
5
0

1

Bootstrapped observations

P
ri

ce
(€

/M
W

h
)

Figure 6: Bootstrapped German electricity prices. The thin mark indicates that the selected value is the
ending point of an observed probabilistic 2-state, the thick mark indicates that the bootstrapped values
are the last points of observed deterministic 2-states.

chosen values. Let us observe at this point the key advantage of the Markov chain bootstrap-
ping method: depending on the different probability distributions associated to each conditioning
event, the resampling method switches from deterministic (e.g., in the case of spikes) to highly
unpredictable.

To evaluate more rigorously the statistical properties of the bootstrapped series with respect to their
original counterparts, for each bootstrapped series, we calculated the following statistics:

1. average

2. standard deviation

3. skewness

4. kurtosis

5. minimum

6. maximum

7. autocorrelation at lag k, k = 1, . . . , 8

8. slope of a linear regression model, b, with x̂j = a + b · j + εj , j = 1, . . . , `.

The statistics 1. − 6. are concerned with the distribution of prices, while 7. and 8. are more concerned
with the dynamic structure of the series. The autocorrelations at lags k = 3 to k = 8 are observed to
check if the similarity between the original and the bootstrapped series is kept beyond the order k = 2
used to define the driving process.
For the distribution of each of the above statistics 1.− 8., Tables 2 and 3 report (for Spain and Germany,
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Table 2: Percentiles of the distributions of some indices computed over the 5000 bootstrapped series of
Spain for two scenarios: the conservative scenario (partition πS) and the progressive scenario (partition
πmilp

S ).

Index Spain - πS Spain - πmilp
S

5th 95th Value Percentile rank 5th 95th Value Percentile rank

percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value

average 28.318 31.975 29.688 46 28.080 31.541 29.688 56

standard dev. 7.796 12.538 9.562 62 7.788 12.318 9.562 65

skewness 0.211 2.126 1.383 67 0.214 2.099 1.383 67

kurtosis −0.127 8.590 5.092 70 −0.150 8.630 5.092 69

minimum 3.599 9.466 5.469 65 3.573 9.303 5.469 69

maximum 58.261 110.729 103.758 80 58.020 110.819 103.758 81

aut. at lag 1 0.748 0.868 0.818 66 0.752 0.868 0.818 65

aut. at lag 2 0.613 0.795 0.705 59 0.617 0.794 0.705 59

aut. at lag 3 0.539 0.764 0.680 70 0.543 0.762 0.680 72

aut. at lag 4 0.485 0.736 0.667 78 0.487 0.733 0.667 80

aut. at lag 5 0.442 0.715 0.661 84 0.444 0.714 0.661 85

aut. at lag 6 0.472 0.729 0.721 93 0.470 0.727 0.721 94

aut. at lag 7 0.526 0.755 0.802 99 0.523 0.753 0.802 99

aut. at lag 8 0.391 0.685 0.683 94 0.387 0.680 0.683 95

lin. regr. slope 0.001 0.006 0.004 69 0.001 0.006 0.004 69

respectively) the 5th and the 95th percentiles, together with the corresponding value for the original series.
To evaluate these distributions, we also report the percentile rank, i.e., the percentage of cases in which
the a statistic is smaller than or equal to the original observed one.

We can make the following observations:

i. For all the four partitions πS , πmilp
S , πG, and πmilp

G , all the statistics computed for the original
series take values in between the two above percentiles. This is true also for the autocorrelations
at lags k = 3 to k = 8, with the exception of the autocorrelations at lag k = 7 for the Spanish case.

ii. The percentile ranks are more fluctuating in the Spanish scenarios than in the German cases: the
lowest percentage for Spain is 46% (see, row “average” of partition πS in Table 2), while it is 51%
for Germany (see, row “average” of partition πmilp

G in Table 3). The highest percentages in the
Spanish and German cases are 99% and 94%, respectively. In general, though, the differences can
be considered negligible.

iii. There seems to be no remarkable difference of values between the 5th and the 95th percentiles
generated with the two partitions πS and πmilp

S , therefore suggesting that the bootstrapped series
obtained with the two partitions are rather similar. The same observation applies to the German
case.

iv. Not all the 5000 series generated in each setting showed a spike. This feature reflects the desirable
property that a rare event, like a spike, does not appear regularly.

The above results suggest that, both in the Spanish and in the German case, it cannot be confuted that
the original series was generated by the same Markov process that produced the 5000 bootstrapped series.
In addition, the statistical properties of the series generated by the bootstrapping procedure based on
πmilp

S and πmilp
G do not significantly differ from those of the series generated by the procedure based on

πS and πG, respectively.

To conclude, our empirical analysis provides evidence that the use of the aggregated transition probability
matrix M∗ does not significantly alter the “information” contained in the original matrix M . Thus M∗
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Table 3: Percentiles of the distributions of some indices computed out of the 5000 bootstrapped series
of Germany for two scenarios: the conservative scenario (partition πG) and the progressive scenario
(partition πmilp

G ).

Index Germany - πG Germany - πmilp
G

5th 95th Value Percentile rank 5th 95th Value Percentile rank

percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value

average 30.683 33.497 32.230 60 30.940 33.717 32.230 51

standard dev. 14.017 21.117 18.396 75 14.141 20.925 18.396 77

skewness 1.308 8.187 3.973 62 1.364 7.803 3.973 66

kurtosis 3.457 145.269 35.562 56 3.751 135.671 35.562 61

minimum 1.451 4.051 3.117 81 1.570 4.533 3.117 71

maximum 132.782 493.512 301.542 60 136.361 486.727 301.542 65

aut. at lag 1 0.635 0.772 0.717 60 0.633 0.772 0.717 62

aut. at lag 2 0.428 0.628 0.572 67 0.430 0.623 0.572 70

aut. at lag 3 0.370 0.550 0.507 76 0.368 0.545 0.507 80

aut. at lag 4 0.335 0.516 0.477 79 0.333 0.511 0.477 83

aut. at lag 5 0.339 0.522 0.487 81 0.338 0.515 0.487 85

aut. at lag 6 0.394 0.597 0.586 92 0.395 0.589 0.586 94

aut. at lag 7 0.442 0.673 0.644 84 0.439 0.664 0.644 89

aut. at lag 8 0.355 0.558 0.544 91 0.353 0.549 0.544 93

lin. regr. slope 0.010 0.014 0.013 62 0.010 0.014 0.013 61

can be adopted in the bootstrapping procedure to generate resampled series with the same characteristic
features of the original one.

4 Conclusions

In this paper we adopted Markov chain theory for resampling series observed from a continuous process.
The novel aspect of our work is that for the first time a Mixed Integer Linear Programming model is
introduced to formulate and solve the problem of optimally clustering the rows of the estimated transi-
tion probability matrix of a Markov chain. Even if it is well known that this problem is computationally
hard, in our application on a medium size real-life case, the problem was solved exactly within reason-
able computational times. With this approach, also the purpose of simplifying the original transition
probability matrix, and yet preserving the law driving a process, can be considered satisfactorily fulfilled
(even in the hard case of electricity prices). However, for large scale partitioning problems (i.e., when
the transition probability matrix has a very high number of rows), a heuristic approach is still advised.
The development of ad hoc heuristics for this kind of problems is one of our future lines of research on
the subject.
Another interesting aspect of the partitioning problem is the possibility of introducing new constraints
for modeling particular relations between the rows of the transition probability matrix. Such an approach
aims at reducing the number of feasible partitions and, therefore, it may be a viable strategy to reduce
the computational effort for solving our MILP model in the general case.

Appendix A - Trend and weekly seasonality removal

The estimation of the exponential trend and weekly seasonality is based on the following model:

e
(c)
t = exp(rt + η1I1(t) + η2I2(t) + η3I3(t) + η4I4(t) + η5I5(t) + η6I6(t) + η7I7(t) + εt), (13)

where e
(c)
t are the raw original prices, Ij(t) is the dummy variable signalling whether t is the jth day

of the week, with j = 1, . . . , 7, r is the growth rate, ηj is the coefficient of dummy variable Ij(t), with
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j = 1, . . . , 7, and εt are the errors. If we take the natural logarithm on both sides of Formula (13), we
obtain the following formula:

zt = rt + η1I1(t) + η2I2(t) + η3I3(t) + η4I4(t) + η5I5(t) + η6I6(t) + η7I7(t) + εt,

where zt = ln e
(c)
t .

For estimation purposes, we assume that the usual hypotheses of linear regression on the errors εt hold.
We obtain the OLS estimates of r and ηj , j = 1, . . . , 7, and they are significant at a level of 5% (see Table
4).

Table 4: Coefficients estimates of an exponential regression model of trend and weekly seasonality applied
to the series of electricity prices of Spain and Germany.

Coefficient estimate Spain Germany

r̂ 0.0001161214 0.0003865792
η̂1 2.9922407785 2.4365264186
η̂2 3.2673051542 2.9583694626
η̂3 3.2697769413 3.0280264215
η̂4 3.2754546141 3.0209612161
η̂5 3.2888136542 3.0002419013
η̂6 3.2762719043 2.9386885451
η̂7 3.1382584293 2.7011989900

To the purpose of removing the exponential trend and the exponential weekly seasonality from our original
series, we define the series of prices e(T ) = (e1, . . . , et, . . . , eT ), where:

et = exp[zt − (r̂t + η̂1I1(t) + η̂2I2(t) + η̂3I3(t) + η̂4I4(t) + η̂5I5(t) + η̂6I6(t) + η̂7I7(t))], t = 1, . . . , T .

Set e(T ) is an input of the bootstrap procedure, while the output is the bootstrapped series x(`) =
(x1, . . . , x`). To re-introduce the exponential trend and the exponential weekly seasonality in x(`), we
multiply each point xj by e(r̂j+η̂1I1(j)+η̂2I2(j)+η̂3I3(j)+η̂4I4(j)+η̂5I5(j)+η̂6I6(j)+η̂7I7(j)), j = 1, . . . , `.

Appendix B - Initial states, or intervals

Table 5 reports the 12 intervals of the initial partition of the support [α, β] of the series of Spain and
Germany after removal of trend and weekly seasonality.
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