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in Bohm and Kaas (2000) while assuming a nonconcave production function in the form given by Capasso et. al.
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1 Introduction

The standard one-sector Solow-Swan model (see Solow, 1956, and Swan, 1956) represents one of the
most used frameworks to describe endogenous economic growth. It describes the dynamics of the
growth process and the long-run evolution of the economic system.

Let yt = f(kt) be the production function in intensive form, mapping capital per worker kt

into output per worker yt, then the Solow-Swan growth model describing the evolution of the state
variable kt in a discrete time setup is given by

kt+1 =
1

1 + n
[(1− δ)kt + sf(kt)]

where n ≥ 0 is the constant labor force growth rate, δ ∈ (0, 1) is the depreciation rate of capital and
s ∈ (0, 1) is the constant saving rate.

Most papers on economic growth considering the Solow-Swan (or neoclassical) model used the
Cobb-Douglas specification of the production function, which describes a process with a constant
elasticity of substitution between production factors equal to one. It is quite immediate to observe
that in this formulation the system monotonically converges to the steady state (i.e. the capital per
capita equilibrium) so neither cycles nor complex dynamics can be exhibited.

More recently, several contributions in the literature have considered the Constant Elasticity
of Substitution (CES) production function , in order to study growth models with elasticity of
substitution that can be either greater or lower than one (see for instance Klump and Preissler (2000)
and Masanjala and Papageorgiou (2004)). In fact, as underlined in Klump and de La Grandville
(2000), the elasticity of substitution between production factors plays a crucial role in the theory of
economic growth since it represents one of the determinants of the economic growth level. Anyway
the long run dynamics is still simple.

Another consideration is that the standard one-sector growth model does not take into account
that different groups of agents (workers and shareholders) have constant but different saving propen-
sities. Such an issue has been studied by many authors (i.e. Kaldor, 1956 and 1957, Pasinetti, 1962
and Samuelson and Modigliani, 1966) in order to understand if the differential saving might influ-
ence the final dynamics of the system. In fact different but constant saving propensities make the
aggregate saving propensity non-constant and dependent on income distribution, so that multiple
and unstable equilibria can occur.

Bohm and Kaas (2000) investigated the following discrete-time neoclassical growth model with
constant but different saving propensities between capital and labor:

kt+1 =
1

1 + n
[(1− δ)kt + sw(f(kt)− ktf

′(kt)) + srktf
′(kt)]

where sw ∈ (0, 1) and sr ∈ (0, 1) are the constant saving rates for workers and shareholders
respectively. They use a generic production function satisfying the weak Inada conditions, i.e.
limkt→∞

f(kt)
kt

= 0, limkt→0
f(kt)

kt
= ∞. The authors show that instability and topological chaos can

be generated in this kind of model.
Starting from Bohm and Kaas (2000), recent contributions in this research line take into account

other production functions in which the weak Inada conditions are not verified.
Brianzoni et al. (2007), (2008) and (2009) investigated the neoclassical growth model in discrete

time with differential savings and endogenous labour force growth rate while assuming CES produc-
tion function. The authors proved that multiple equilibria are likely to emerge and that complex
dynamics can be exhibited if the elasticity of substitution between production factors is sufficiently
low. The results obtained prove that production function elasticity of substitution plays a central
role in the creation and propagation of complicated dynamics in growth models with differential
saving.

As a further step in this field, Brianzoni et al. (2011) firstly introduced the Variable Elasticity of
Substitution (VES) production function in the form given by Revankar (1971), in the discrete time
neoclassical growth model (the same setup in continuous time was considered by Karagiannis et al.
(2005)). The use of the VES production function allows to take into account that the elastiticy of
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substitution between production factors is influenced by the level of economic development. The
authors prove that the model can exhibit unbounded endogenous growth when the elasticity of
substitution between labour and capital is greater than one, as it is quite natural while the variable
elasticity of substitution is assumed (and differently from CES) confirming the results obtained
by Karagiannis et al. (2005) in the continuous setup. Furthermore, the results obtained aim at
confirming that the production function elasticity of substitution is responsible for the creation and
propagation of complicated dynamics, as in models with explicitly dynamic optimizing behavior by
the private agents (see Becker (2006) for a survey about these models).

For many economic growth models based on inter-temporal allocation, the hypothesis of a concave
production function has played a crucial role. In fact the production function is the most important
part of a growth model as it specifies the maximum output for all possible combinations of input
factors and therefore determines the way the economic model evolves in time. Usually a production
function is assumed to be non-negative, increasing and concave, and also to fulfill the so called Inada
Conditions i.e. f(0) = 0, limkt→0 f ′(kt) = +∞ and limkt→+∞ f ′(kt) = 0.

Let us focus on the meaning of condition limkt→0 f ′(kt) = +∞ from an economic point of view.
We take into account a region with almost no physical capital, that is there are no machines to
produce goods, no infrastructure, etc. Then the previous condition states that it is possible to
gain infinitely high returns by investing only a small amount of money. This obviously cannot be
realistic since before getting returns it is necessary to create prerequisites by investing a certain
amount of money. After establishing a basic structure for production, one might still get only small
returns until reaching a threshold where the returns increase greatly to the point where the law of
diminishing returns takes effect. In literature this fact is known as poverty traps. In other words,
we should expect that there is a critical level of physical capital having the property that, if the
initial value of physical capital is smaller than such a level, then the dynamic of physical capital will
descend to the zero level, thus eliminating any possibility of economic growth. Thus we introduce
the before mentioned threshold k̄ in order to consider what happens to the Solow model if we do not
assume a concave production function. In fact concavity assumptions provide a good approximation
of a high level of economic development but is not always applicable to less-developed countries. A
small amount of money may have an effect in the short run but this effect will tend to zero in the
long run if there are no more investments. Thus it makes sense to assume that only an amount of
money larger than some threshold will lead to returns.

The first model with nonconcave production function was introduced by Clark (1971) and Skiba
(1978). Following such works several contributions have then focused on the existence and impli-
cations of critical levels (see, among others, Kamihigashi and Roy 2006 and 2007 and Majumdar
and Mitra 1983). Capasso et al. (2010) focused on a parametric class of nonconcave production
functions which can be considered as an extension of the standard Cobb-Douglas production func-
tion; the authors study the Solow growth model in continuous time and show the existence of rich
dynamics by mainly using numerical techniques.

In the present work we study the discrete time one sector Solow-Swan growth model with dif-
ferential savings as in Bohm and Kaas (2000), while assuming that the technology is described by
a nonconcave production function in the form given by Capasso et al. (2010). Our main goal is
to describe the qualitative and quantitative long run dynamics of the growth model to show that
complex features can be observed and to compare the results obtained with the ones reached while
considering the CES or the VES technology.

The results of our analysis show that our model can exhibit complexity related both to the
structure of the attractors of the system (passing from locally stable fixed points to bounded fluc-
tuations or, even, to chaotic patterns), to the coexistence of attractors giving rise to multistability
phenomenon and, finally, to the structure of the basins of attraction (from a simple connected to a
non-connected one).

The role of the production function elasticity of substitution has been related to the creation and
propagation of complicated dynamics. In fact, similarly to what happens with the CES and VES
production function (see Brianzoni et. al. (2007), (2009) and (2011)), if shareholders save more
than workers and the elasticity of substitution between production factors is low, then fluctuations
may arise.
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The paper is organized as follows. In section 2 we introduce the model. In section 3 we perform
the dynamic analysis. In section 4 we deal with the case in which complex dynamics are exhibited.
Section 5 concludes our paper.

2 The model

Let yt = f(kt) be the production function in intensive form, mapping capital per worker kt into
output per worker yt, then, the neoclassical one-sector growth model with different but constant
saving rates between worker and shareholders as proposed by Bohm and Kaas (2000) is given by:

kt+1 =
1

1 + n
[(1− δ)kt + sww(kt) + srktf

′(kt)] (1)

where δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1) and sr ∈ (0, 1) are the constant
saving rates for workers and shareholders respectively, and n ≥ 0 is the constant labor force growth
rate.

The wage rate w(kt) must equal the marginal product of labor i.e. w(kt) := f(kt) − ktf
′(kt),

furthermore shareholders receive the marginal product of capital f ′(kt) hence the total capital income
per worker is ktf

′(kt), then equation (1) may be re-written as follows:

kt+1 =
1

1 + n
[(1− δ)kt + swf(kt) + (sr − sw)ktf

′(kt)]. (2)

In order to obtain the dynamic system describing the evolution of the capital per capita as given
by (2) we have to specify the production function.

Economic growth models used to consider the hypothesis of a production function satisfing the
following standard economic properties: f(k) > 0, f ′(k) > 0 and f ′′(k) < 0, ∀k > 0; observe that
such properties hold for the Cobb-Douglas, CES and VES production functions. In addition both
the VES and the Cobb-Douglas production functions verify one of the Inada Conditions, that is
limkt→0 f ′(kt) = +∞.

According to the previous condition an economy with no physical capital can gain infinitely
high returns by investing only a small amount of money, hence it cannot be considered a realistic
assumption. In fact, it is quite obvious to assume that a certain amount of investment is needed
before reaching a threshold capital level k̄ such that great returns are obtained only for kt ≥ k̄. To
be more precise, a more realistic economic assumption might take into account that a k̄ > 0 does
exist such that the production function f(k) is carachterized by increasing (decreasing) marginal
returns for kt < k̄ (kt ≥ k̄). This fact is known as the poverty trap as, if the initial value of capital
is sufficiently small, then the dynamic law of capital accumulation will push the capital level to
zero and no economic growth will take place. Given such considerations, the concavity assumption
provides a good approximation for a production function only at high level of economic development
while, if a less developed country is considered, then a nonconcave production function has to be
taken into account.

Following Capasso et. al. 2010, we consider a sigmoidal production function (that is it shows an
S-shaped behavior) given by

f(kt) =
αkp

t

1 + βkp
t

, (3)

where α > 0, β > 0 and p ≥ 2. Observe that

f ′(kt) =
αpkp−1

t

(1 + βkp
t )2

, (4)

f ′′(kt) =
(pαkp−2

t )[p(1− βkp
t )− (1 + βkp

t )]
(1 + βkp

t )3
,

and recall that the Inada Conditions are f(0) = 0, limkt→0 f ′(kt) = +∞ and limkt→+∞ f ′(kt) = 0.
Then function (3) is positive ∀kt > 0, strictly increasing and it is a convex-concave production
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function. In fact f ′(kt) > 0, ∀kt > 0 while a k̄ > 0 exists such that f ′′(kt) > (<)0, if 0 < kt < k̄

(kt > k̄), being k̄ =
(

p−1
β(p+1)

) 1
p

the inflection point of f . Furthermore the production function (3)
does not satisfy one of the Inada Conditions in fact

lim
kt→0

f ′(kt) = lim
kt→0

αpkp−1
t

(1 + βkp
t )2

= 0.

Observe also that the elasticity of substitution between production factors of function (3) depends
on the level of the capital per-capita kt as it is given by:1

σ(k) = 1 +
βpkp

p(1− βkp)− (1 + βkp)
(5)

so that also this function belongs to the class of VES production functions, i.e. the elasticity of
substitution depends on k. Observe the role played by the constant p: if p is great enough then σ(k)
decreases w.r.t. p where

σ′p(k) =
βkp[p2lnk − plnk − 1− βkp]

[p− 1− βkp(p + 1)]2

and

• if k > 1 then limp→+∞ σ(k) = 0;

• if k < 1 then limp→+∞ σ(k) = 1;

• if k = 1 then limp→+∞ σ(k) = 1/(1− β).

By substituting equations (3) and (4) into (2) we obtain the following one dimensional map
describing the capital accumulation:

kt+1 = F (kt) =
1

1 + n

[
(1− δ)kt +

αkp
t

1 + βkp
t

(
sw + p

sr − sw

1 + βkp
t

)]
(6)

with F continuous and smooth function for all kt > 0.

3 Stability of steady states

We first consider the question of the existence and number of fixed points or steady states of map
(6) and then we discuss about their stability depending on all the parameter values.

The estabilishment of the number of steady states is not trivial to solve, considering the high
variety of parameters. As a general result, the map F always admits one fixed point characterized by
zero capital per capita, i.e. k = 0 is a fixed point for any choice of parameter values. Anyway steady
states which are economically interesting are those characterized by positive capital per worker.

In order to determine the positive fixed points of F , let us define the following function

G(kt) :=
kp−1

t

1 + βkp
t

(
sw + p

sr − sw

1 + βkp
t

)
, kt > 0 (7)

then solutions of equation G(kt) = n+δ
α are positive fixed points of F . The following proposition

states the number of fixed points of F according to the parameter values.

Proposition 1. Let F be given by (6) and sr > sw.2 Then a k0 > 0 does exist such that:

1We use the following formula σ(k) = − f ′
kf

f−kf ′
f ′′ .

2In this work we deal with the case in which shareholders save more than workers for two reasons. First, the other
case must be treated in a different manner as function F is no longer positive. Second, this case is more realistic from
the economic point of view and such a study can be compared with the others considering differential saving rates
(such as Brianzoni et al. (2007), (2009) and (2011)).
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(i) if n+δ
α > G(k0), F has a unique fixed point given by kt = 0;

(ii) if n+δ
α = G(k0), F has two fixed points given by kt = 0 and kt = k∗ > 0;

(iii) if n+δ
α < G(k0), F has three fixed points given by kt = 0 and 0 < k1 < k2.

Proof. kt = 0 is a solution of equation kt = F (kt) for all parameter values hence it is a fixed
point. Function (7) is such that G(kt) > 0 , ∀kt > 0, furthermore limkt→0+ G(kt) = 0 and
limkt→+∞G(kt) = 0. Hence G(kt) has at least one critical point being a maximum point (namely
k0). We prove that it is unique.

Let G(k) := G(kt) then, given the production function f as defined in (3), we obtain

G(k) =
f

αk

(
sw + p

sr − sw

1 + βkp

)
.

Define ∆s = sr − sw and M(k) = βkp then we obtain

G′ =
1
α

[
f ′k − f

k2

(
sw + p

∆s

1 + M

)
− f

k

(
p2∆sM

k(1 + M)2

)]
.

Making use of relation f ′ = pf
k(1+M) we reach the following expression

G′ =
f

α(1 + M)2k2
[aM2 + bM + c],

where a = −sw, b = sw(p− 2)−∆s(p2 + p) and c = sw(p− 1) + ∆s(p2 − p).
The critical points of G are the positive solutions of equation aM2 +bM +c = 0; being a < 0 and

c > 0 then it admits a unique positive solution given by M̄ = −b−√b2−4ac
2a > 0. Hence function G

has a unique maximum point k0 =
(

M̄
β

) 1
p

and consequently it intersects the positive and constant

function g = n+δ
α in two, one or no points if g < G(k0), g = G(k0) or g > G(k0) respectively.

According to the previous proposition, if sr > sw (that is shareholders save more than workers)
the map always admits the equilibrium k = 0, moreover up to two additional (positive) fixed points
can exist according to the parameter values hence multiple equilibria are exhibited. We now wish
to study the local stability of these equilibria. Let us consider first the origin.

Proposition 2. Let F be as given in (6) and sr > sw. Then the equilibrium k = 0 is always locally
stable.

Proof. Firstly notice that function F may be written in terms of function G being

F (k) =
1

1 + n
[(1− δ)k + αkG(k)],

hence F ′(k) = 1
1+n [1 − δ + α(G(k) + kG′(k))]. Being limk→0+ G(k) = 0 and limk→0+ kG′(k) = 0,

then F ′(0) = 1−δ
1+n ∈ (0, 1) and consequently the origin is a locally stable fixed point for map F .

Observe that as in Capasso et. al. (2010) the use of the S-shaped production function implies
the existence of a poverty trap. Recall that in models previously proposed in which production
function is concave (as the CES production function in Brianzoni et al. (2007) and (2009) or the
VES production function in Brianzoni et al. (2011)) the origin is always a locally unstable fixed
point hence the economy will converge in the long run to positive level growth rates (eventually with
periodic or even a-periodic dynamic features). Differently, in our new setup, the origin is always
locally stable hence economies starting from a sufficiently low level of capital per-capita may be
captured by a poverty trap. More precisely, there exists a critical level of physical capital having the
property that, if the initial value of physical capital is smaller than such a level, then the dynamic
of physical capital will converge to zero, thus eliminating any possibility of economic growth.
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Figure 1: Map F and its fixed points in the case of strict monotonicity for the following parameter
values: β = 0.5, sw = 0.2, sr = 1, p = 3, δ = 0.2, α = 0.3. In panel (b) n = αG(k0)−δ = 0.1606 = n̄;
in (a) n > n̄, in (c) n < n̄.
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Figure 2: Map F and its fixed points in the case of non-invertibility for the following parameter
values: β = 0.5, sw = 0.2, sr = 1, p = 8, δ = 0.2, α = 0.3. In panel (b) n = n̄ = 0.7444; in (a)
n > n̄, in (c) n < n̄.
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Furthermore, from the previous Proposition it follows that the fixed point k = 0 is globally stable
when it is the unique steady state owned by the map (i.e. case (i) of Proposition 1), see Figures 1
and 2 panel (a). According to Proposition 1, this happens when n+δ

α > G(k0).
Since G(k0) does not depend on α and being α > 0 we can conclude that ∃ᾱ such that k = 0 is

the unique steady state owned by the system ∀0 < α < ᾱ (this means that the production function
upper bound is small enough). Similarly, being n upper unbounded, then a n̄ does exist such that
k = 0 is the unique steady state of the model ∀n > n̄, (that is if population growth rate is sufficiently
high) given the other parameter values. In such cases the poverty trap cannot be avoided and the
system will converge to a zero growth rate.

We now focus on the case stated in Proposition 1 (iii), i.e. map F has three fixed points given
by kt = 0, k1 > 0 and k2 > 0, being k1 < k2. About the local stability of the two positive fixed
points, we start proving the following proposition.

Proposition 3. Let F be as given in (6), sr > sw, and n+δ
α < G(k0). Then the equilibrium k1 is

always locally unstable.

Proof. Recall that

F (k) =
1

1 + n
[(1− δ)k + αkG(k)],

hence F ′(k1) = 1−δ
1+n + α

1+n [(G(k1) + k1G
′(k1))]. From Proposition 1 it follows that G(k1) = n+δ

α
hence, by substituting in the previous formula, we obtain that F ′(k1) = 1 + α

1+nk1G
′(k1) > 1 since

G′(k1) > 0 (in fact k1 is located on the increasing branch of function G).

From the previous proposition it follows that k1 is a locally unstable fixed point; furthermore
map F is increasing in such a point. Let us now focus on the local stability of k2 by proving the
following Proposition.

Proposition 4. Let F be as given in (6), sr > sw, and n+δ
α < G(k0). Then F ′(k2) < 1.

Proof. Similarly to the considerations used to prove Proposition 3 we obtain that F ′(k2) = 1 +
α

1+nk2G
′(k2) < 1 being G′(k2) < 0 as k2 is located on the decreasing branch of function G.

As a consequence, the steady state k2 may be locally stable if F ′(k2) ∈ (−1, 1) or locally unstable
if F ′(k2) < −1; in this last case k2 loses its stability via flip bifurcation and a two period-cycle may
be created proving that our model may produce fluctuations in economic growth (we will explain
the route to chaos in the following section).

In order to obtain results concerning the local stability of k2 we use the following arguments to
prove that function F may be strictly increasing or bimodal, according to the parameter values.

Recall that F may be written in terms of G, and consider the expression for F ′ as given in the
proof of Proposition 2, that is

F ′(k) =
1

1 + n
[1− δ + α(G(k) + kG′(k))],

then F ′ = 0 iff G(k) + kG′(k) = (δ− 1)/α < 0. Observe that G(k) + kG′(k) can be written in terms
of M(k) = βkp ≥ 0 (being M a continuous, differentiable and strictly increasing function of k) as
follows:

G(k) + kG′(k) =
pM

p−1
p

β
p−1

p (1 + M)3
[(sw − p∆s)M + sw + p∆s] = H(M(k))

hence the critical points of F are solutions of equation

H(M(k)) = (δ − 1)/α. (8)

Observe that if sw − p∆s ≥ 0 then H(M(k)) is positive for all k > 0 and consequently equation (8)
has no solution. In such a case F is strictly increasing and no complicated dynamics occurs.

In order to obtain a sufficient condition for F being non-invertible, we study function H(M) to
determine the number of solutions of equation (8).
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Assume sw−p∆s < 0. Function H(M) is such that H(0) = 0, limM→∞H(M) = 0 and H(M) >
(<)0 if M < (>) sw+p∆s

−sw+p∆s being sw+p∆s
−sw+p∆s > 1. As a consequence H(M) can intersect the constant

and negative function h = (δ − 1)/α only in points belonging to the interval I =
(

sw+p∆s
−sw+p∆s , +∞

)
.

Obviously H admits at least one maximum point MM less than sw+p∆s
−sw+p∆s and at least one minimum

point Mm belonging to the interval I. We now want to prove that H admits only one minimum
point Mm, so that it may intersect function h at most in two points M1 and M2 (in such a case
funtion F is bimodal, that is it admits both a local maximum and a local minimum point).

We first compute the derivative of function H. We rewrite function H as follows:

H(M) =
AM2 + BM

M
1
p (1 + M)3

where A = p

β
p−1

p

(sw − p∆s) < 0 and B = p

β
p−1

p

(sw + p∆s) > 0, hence

H ′(M) =
1

pM
1
p (1 + M)4

[
(−1− p)AM2 + [(2p− 1)A− (2p + 1)B]M + (p− 1)B

]

so that it admits two positive zeroes that are MM and Mm respectively, where

Mm =
−[(2p− 1)A− (2p + 1)B] +

√
[(2p− 1)A− (2p + 1)B].2 + 4(p2 − 1)AB

2(−1− p)A

and consequently if H(Mm) < (δ−1)/α then equation (8) has two solutions (M1 and M2). In such a
case function F is bimodal hence kM = (M1/β)

1
p and km = (M2/β)

1
p are respectively its maximum

and minimum points.
The previous considerations prove the following Proposition.

Proposition 5. Let F be as given in (6), sr > sw.

(i) Let sw − p∆s ≥ 0, then map F is strictly increasing.

(ii) Let sw − p∆s < 0 and define A = p

β
p−1

p

(sw − p∆s) < 0, B = p

β
p−1

p

(sw + p∆s) > 0 and

H(M) = AM2+BM

M
1
p (1+M)3

. Then Mm > 1 does exist such that:

(a) if H(Mm) ≥ (>) δ−1
α then F is (strictly) increasing;

(b) if H(Mm) < δ−1
α then F admits a maximum point kM and a minimum point km such

that 1 < kM < km.

We first focus on case (i) of Proposition 5 stating a sufficient condition such that the map is
increasing (see Figure 1). Obviously in such a case, if the origin is the unique fixed point, then it is
globally stable (case (i) of Proposition 1).

When G(k0) crosses the value n+δ
α then a fold bifurcation occurs creating a new fixed point

namely k? (case (ii) of Proposition 1). Such a steady state is a non-iperbolic fixed point being its
eigenvalue equal to one. Anyway, as F is strictly increasing, then k? attracts trajectories having
initial condition (i.c.) k0 ≥ k? while the interval [0, k?) is the basin of attraction of the origin.
Observe that in such a case the poverty trap can be avoided if the economy starts from a sufficiently
high level of capital per capita.

Finally, in case (iii) of Proposition 1 three fixed points are owned by F ; furthermore F ′(k2) ≥ 0.
Hence, taking into account the result proved in Proposition 4, it must be F ′(k2) ∈ (0, 1) (see Figure
(1) panel (c)) and consequently the steady state k2 is locally stable. The unstable fixed point k1

separates the basin of attraction of the origin and that of k2. In this case both the structure of the
attractors (fixed points) and that of their basins (connected sets) are simple.

In all the above mentioned cases only simple dynamics is presented: i.e. the economic system
monotonically converges to a steady state caractherized by a zero (poverty trap) or a positive capital
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per capita growth rate. Observe that, according to condition (i) of Proposition 5 a ∆̄s does exist
such that F is increasing ∀∆s < ∆̄s. This means that no cycles or complex features are observed
if the difference between the two propensities to save is low enough, confirming what proved in
Brianzoni et al. (2007), (2009) and (2011) in which concave production functions were taken into
account (the CES and the VES function respectively).

In order to find more complex long run growth patterns we have to focus on case (ii) of Propo-
sition 5 stating conditions such that F is non-invertible (see Figure 2).

First notice that if F has only the origin as a fixed point then, as in the previous case, it is
globally stable (case (i) of Proposition 1). Hence we want to consider the case in which more than
one fixed point is owned by F , i.e. condition (ii) or (iii) of Proposition 1 holds.

Observe that, for any given value of the other parameters, if α is great enough then n+δ
α ≤ G(k0),

hence F has two or three fixed points: multiple equilibria exist and their basins of attraction have
to be discussed. Furthermore, since F can be bimodal, then complex dynamics can be exhibited, so
that the role of the parameters of the model and the route to complexity must be described.

In fact the iterated application of a noninvertible map repeatedly folds the state space allowing
to define a bounded region where asymptotic dynamics are trapped. Furthermore, the iterated
application of the inverses repeatedly unfolds the state space, so that a neighborhood of an attractor
may have preimages far from it. This may give rise to complexity both in the qualitative structure
of the attractor (that can be periodic or chaotic) and in the topological structures of the basins (that
can even be formed by the union of several disjoint portions).

Condition sw − p∆s < 0 in Proposition 5 (ii) is necessary for F being bimodal. In such a case
limp→+∞H(Mm) = −∞ so that a p1 > 0 does exist such that F is bimodal ∀p > p1. Being the
non-invertibility of F a necessary condition for our model having complex dynamics, the previous
condition is necessary for cycles of chaotic dynamics to be observed. In addition another necessary
condition for our setup showing non-trivial dynamics is that three fixed points are owned by F that
is n+δ

α < G(k0). Similarly to the previous consideration, we observe that limp→+∞G(k0) = +∞
and consequently a p2 > 0 does exist such that F admits three fixed points ∀p > p2. Let p̄ =
max{p1, p2, 2}, then the following Proposition trivially holds.

Proposition 6. Let F be as given in (6), sr > sw. Then a p̄ > 0 does exists such that F is bimodal
and admits three fixed points ∀p > p̄.

The previous condition is necessary for cycles or chaos to be observed in our model. It is straight-
forward to observe that complex features can emerge if p is great enough as long as sr > sw. This
fact proves that both the elasticity of substitution and the different saving propensities contribute
to generate complexity in economic growth, as in models with concave production functions.

4 Complex dynamics

We now want to study the qualitative asymptotic properties of the sequence generated by F in the
case of non-invertibility, by combining analytical tools and numerical simulations.

We will prove that a generic trajectory may converge to a given steady state or to a more complex
attractor, that may be periodic (an m-period cycle) or chaotic. In this last case we will determine the
bounded set of the line where the system’s dynamics are trapped and we will describe the complexity
of the attractors belonging to these sets.

Furthermore, we will prove that multistability, i.e. the existence of many coexisting attractors
(that may be periodic or even chaotic sets) emerges.

Finally, as our map is characterized by coexisting attractors, we will study global bifurcations
occurring as some parameters are varied that are responsible for changing in the properties of the
attracting sets and of their basins of attraction (that may consist of infinitely many non connected
sets).

These problems lead to different routes to complexity, one related to the complexity of the
attracting sets which characterize the long run time evolution of the dynamic process, the other
one related to the complexity of the boundaries which separate the basins when several coexisting
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attractors are present. These two different kinds of complexity are not related in general, in the
sense that very complex attractors may have simple basin boundaries, whereas boundaries which
separate the basins of simple attractors, such as coexisting stable equilibria, may have very complex
structures.

4.1 Multistability and complex attractors

Recall that function F always admits a locally stable fixed point given by k = 0, hence the set
A0 = {0} is an attractor for F for all parameter values.

In order to assess the possibility of complex dynamics arising, we have to consider the case in
which Proposition 6 holds, that is F is bimodal (it has two critical points kM and km) and admits
three fixed points. Let us start considering the stability of the fixed point k2 and the bifurcations
it undergoes as some parameters vary. As we pointed out, the eigenvalue associated to k2 can
be positive or negative depending on the position of k2 w.r.t. the critical points, more precisely
F ′(k2) < 0 iff k2 ∈ (kM , km). Obviously if k2 ≤ kM or k2 ≥ km no complex dynamics can arise.

Let p > p̄, then after the fold bifurcation occurring at n+δ
α = G(k0) (see Proposition 1), two fixed

points k1 and k2 are created (for instance when n decreases crossing a given value n̄ or α increases
crossing a given value ᾱ). Immediately after this bifurcation the two fixed points born from a little
perturbation of the parameters both belong to the increasing branch of F (as it is continuous and
differentiable also w.r.t. the parameters of the model) hence 0 < k1 < k2 < kM < km. As a
consequence k1 is unstable while the other fixed points are (locally) stable.

Let F (km) > k1, then the unstable fixed point k1 separates the basin of attraction of A0 given
by B(A0) = [0, k1) from the basin of attraction of the positive steady state k2 given by B(k2) =
(k1,+∞). In this situation an economic policy trying to increase investment can be able to push
the economy out of the poverty trap toward a positive long run economic growth rate.

In the case previously described k2 is a locally stable fixed point. Anyway, as underlined, k2

may be locally unstable and in such a case a more complex attractor may appear around k2; we call
such an attractor A. Obviously, given the shape of map F , a necessary condition for A having a
complicated structure is kM < k2 < km (so that the fixed point k2 belongs to the decreasing branch
of F ). Given the analitycal form of F we cannot give conditions for such a case, anyway we can
describe the transition to chaos by means of numerical simulations. In this subsection we want to
describe the structure of A by focusing on the case in which F (km) > k1.3

Being F bimodal it admits a forward invariant interval bounded by the local maximum and the
local minimum. The following proposition states the existence of a trapping set for the map F for
economically meaningful parameter range related to non-trivial dynamics.

Proposition 7. Let F be as given in (6), sr > sw, p > p̄ and F (km) > k1. If kM < k2 < km then
the set S = [F (km), F (kM )] is trapping .

In fact F acts from the interval S into itself, in other words S is a closed region positively
invariant.4 Moreover any trajectory generated from an i. c. in (k1, +∞) enters in S after a finite
number of iterations, i.e. S is absorbing. As S is trapping then the attractor A (different from A0)
of F must belong to S. Obviously it may consists of a fixed point (k2) or a more complex set or
two coexisting attractors may be owned. Anyway, observe that the only way in which k2 may lose
stability is via period-doubling bifurcation.

According to the previous Proposition every i.c. k0 > k1 generates bounded trajectories con-
verging to an attractor included into the trapping interval S.

As S is trapping, we can restrict map F to such a set; we call FS the map F defined in S and
we describe the properties of FS . Observe that the following cases may occur (see Figure 3).

(i) If F (kM ) < km and F (km) > kM then kM 6∈ S and km 6∈ S (we are considering the case in
which the critical points do not belong to S). In such a case FS is strictly decreasing and A
consists of a fixed point or of a 2-period cycle; more complex dynamics are rouled out.

3A bimodal map having a similar behaviour to the one we are studing is in Liz (2010).
4A set E ⊆ R+ is positively (negatively) invariant if F t(E) ⊆ E (F t(E) ⊇ E), ∀t ∈ Z+. E is called invariant when

it is both positively and negatively invariant.
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Figure 3: Map F and set S for β = 0.9, α = 1, n = 0.5, sw = 0.1 and sr = 0.7. (a) p = 6 and FS

is strictly decreasing; (b) p = 8 and FS is unimodal (the maximum point belongs to S); (c) p = 12
and FS is bimodal (both kM and km belong to S).
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Figure 4: Coexisting attractors of F for the parameter values considered in Figure 3 and p = 12.
(a) 4-pieces chaotic attractor for the initial condition kM ; (b) cycle-2 for the initial condition km.

(ii) If F (kM ) > (<)km and F (km) > (<)kM then km ∈ ( 6∈)S while kM 6∈ (∈)S. This means
that only the minimum (maximum) point belongs to the trapping set S hence FS is unimodal.
In such a case A consists of a fixed point, an m-period cycle or a more complex attractor.
The bifurcation structure eventually leading to complexity is the period-doubling bifurcation
cascade (see Figure 3 panel (b)).

(iii) If F (kM ) > km and F (km) < kM then the two critical points belong to FS ; this means
that F is bimodal in S (see Figure 3 panel (c)) so that two coexisting attractors may be
presented, namely AM and Am where AM (Am) is the set attracting the trajectory starting
from the maximum (minimum) point. In such a case the attractor A inside S is given by
A = AM ∪Am.5

In Figure 4 we show the two coexisting attractors Am and AM by choosing parameter values
such that FS is bimodal. Observe that AM is a 4-pieces chaotic attractor while Am is a 2-period
cycle.

Recall that we are considering the cases in which the unstable fixed point k1 does not belong to
the trapping set S, and consequently the basins of attraction of A0 and of A have a simple structure
(simply connected basins), that is B(A0) = [0, k1) and B(A) = (k1, +∞) .

In order to discuss the bifurcations leading to chaos we present some numerical simulations.
Hence we fix the following parameter values: δ = 0.2, α = 1, β = 0.9, sw = 0.1, n = 0.5 and we
let parameters p and ∆s = sr − sw vary. In fact we are mostly interested in the role played by
parameters p and ∆s: the former informs about the elasticity of substitution (that decreases as p
increases), while the latter takes into account the difference between the two saving rates (once sw

is fixed).
As we have discussed, the system becomes more and more complex as p increases. This consid-

eration is also supported by looking at Figure 3 showing that FS becomes bimodal as p increases.
In order to better understand the role of parameter p that is strictly related to the elasticity of
substitution in our model, we describe the sequence of bifurcations of F w.r.t. p and we show that

5About the coexistence of attractors in bimodal maps see Mira et al. (1996).
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Figure 5: One dimensional bifurcation diagram of map F w.r.t. p for sr = 0.7. (a) k0 = kM and
the attractor AM is presented; (b) k0 = km and the attractor Am is presented.

multistability occurs.6 The bifurcation diagrams in Figure 5 show how dynamics are increasingly
complex if the elasticity of substitution between production factors declines (i.e. p increases). In
panel (a) we depicted the attractor for k0 = kM while in (b) the initial condition is given by the
minimum point.

Obverve first that the trajectory converges to k2 if p < 6.77; if p still increases a period doubling
bifurcation occurs and a 2-period cycle appears. After such a bifurcation in panel (a) we observe
a sequence of period doubling bifurcations as the maximum point entered in S at p ' 10, while in
panel (b) we observe a breack in the bifurcation diagram at p ' 12 as also the minimum point entered
in S, hence multistbility can be observed for suitable values of the parameters. Observe that for
p < 16.46 condition F (km) > k1 holds so that every initial condition with k0 > k1 generates bounded
trajectories converging to an attractor inside S. On the contrary, if F (km) < k1 the unstable point
k1 belongs to S and a global bifurcation occurs (we will explain such a case later).7

The following statement summarizes our previous considerations.

Proposition 8. Assume the same hypotheses of Proposition 7. Then A ⊆ S attracts all trajectories
starting from B(A) = (k1, +∞) (it may consist of a fixed point, an n−period cycle or a strange
attractor or it can be the union of two coexisting attractors AM and Am) while A0 = {0} attracts
all trajectories starting from B(A0) = [0, k1).

4.2 Contact bifurcations and complex basins

As function F is bimodal then it admits two critical points kM and km such that F (kM ) and
F (km) separetes the set R+ into two subset: Z1 = [0, F (km))∪ (F (kM ), +∞) whose points have one
rank-1 preimage and Z3 = (F (km), F (kM )) whose points have three rank-1 preimages (in the local
maximum and minimum the two merging preimages km and kM are located). As a consequence F is
a Z1−Z3−Z1 non invertible map where Z3 is the portion of R+ bounded by the relative minimum

6About multistability see, among others, Bischi et al. (2000) and Sushko et al. (2005).
7This kind of bifurcation requires an analisys of the global dynamical properties of the system, that is, an analisys

which is not based on the linear approximation of the map.
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Figure 6: (a) Non connected basin of attraction of the origin for the following parameter values:
β = 0.9, sw = 0.1, sr = 0.7, p = 15, δ = 0.2, n = 0.5 and α = 0.32. (b) After the final bifurcation
the origin attracts the trajectory starting from the maximum point for α = 0.34.

value and the relative maximum value. Furthermore, as three fixed points are owned by F , then
the origin is a locally stable fixed point, k1 is a locally unstable fixed point while k2 may be locally
stable or unstable and one (A) or two (AM and Am) more complex attractors may exist around k2.
As our map F admits more then one attracting set, each with its own basin of attraction, we have
to describe their changes as the parameter of the model vary.8

In the previous subsection we described the structure of set A when F (km) > k1 and we showed
that multistability due to the presence of two coexisting attractors occurs. Notice also that if
F (km) = k1 then a critical point of F is pre-periodic. Thus no attracting cycles exist since the
basin of attraction of these cycles cannot contain the critical point k1, providing the evidence of the
existence of parameter values such that the map is chaotic.

A completely different situation appears if F (km) crosses k1 as a contact bifurcation occurs.
Such a bifurcation happens if a parameter variation causes a crossing between a basin boundary
and a critical set so that a portion of a basin enters in a region where an higher number of inverses
is defined, then new components of the basin suddenly appear after the contact (see Bischi et
al. (2011)). Obviously trajectories starting from B(A0) converge to the origin (immediate basin),
hence if the economy starts from a low level of economic growth it will fall in the poverty trap.
On the other hand, if some parameters change this causes the minimum value F (km) to cross k1,
then the portion (F (km), k1) enters in Z3 so that new preimages appear. In fact k1 has two new
preimages given by (ka

1 )−1 < km and (kb
1)−1 > km and consequently initial conditions belonging

to B−1 = ((ka
1 )−1, (kb

1)−1) also generate trajectories converging to zero as B−1 is mapped into set
B(A0) after one iteration.

Let F 2(kM ) < k1, so that the second iterate of the maximum point does not belong to the
immediate basin of the origin B(A0), then the previous procedure can be repeated while considering
the preimages of rank-2 of the unstable fixed point k1. Again, let (ka

1)−2 and (kb
1)−2 be the preimages

of (ka
1)−1 and (kb

1)−1, then initial conditions belonging to the set B−2 = ((ka
1 )−2, (kb

1)−2) generate
trajectories converging to B(A0) after two iterations. The story repeates and a set of non-connected
portion is created, so that the contact between the critical set and the basin boundary marks the
transition between simple connected to non-connected basins. Finally the basin of attraction of the
origin is given by

B(0) = B(A0) ∪i≥1 ((ka
1)−i, (kb

1)−i).

In such a case an economic policy trying to push up the investment does not guarantees the exit
from the poverty trap (see Figure 6 panel (a)).

In Figure 7 we present two trajectories converging to different attractors for close initial condi-
tions: in panel (a) k0 = 1.26 belongs to the basin of A and A consists in a very high period cycle or
in a chaotic set; in panel (b) the initial condition is k0 = 1.27 belonging to the basin of the origin.

8About the structure and the bifurcations related to the basins of attraction see Mira et al. (1996).
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Figure 7: K-L staircase diagram for the following parameter values: δ = 0.2, α = 0.4, β = 0.9,
n = 0.5, sw = 0.1, sr = 0.9 and p = 11. (a) k0 = 1.26 generates a trajectory converging to A
consisting in a complex set; (b) k0 = 1.27 generates a trajectory converging to A0.

In fact in such a case being F (km) < k1 the basin structure is complex as it consists of infinitely
many non-connected sets.

Finally, at F 2(kM ) = k1 a final bifurcation occurs such that the maximum point is attracted
by the unstable fixed point k1 and the map is chaotic (see Devaney (1986)). After such a final
bifurcation F 2(kM ) < k1 and A is a Cantor set (the origin attracts almost all trajectories, see
Figure 6 panel (b)).

4.3 Numerical simulations

The joint analysis of the map w.r.t. p and ∆s explains how the elasticity of substitution in the non-
concave production function affects the final long run dynamics of the growth model for different
values of the difference between the two saving rates. In Figure 8 we present two cycle cartograms
showing a two parametric bifurcation diagram qualitatively: each color represents a long-run dy-
namic behaviour for a given point in the parameter plane (∆s, p) and for the initial conditions
k0 = kM and k0 = km respectively. A large diversity of cycles of different order is exhibited. The
red region represents the parameter values for which the function is monotonic and the origin is
globally stable; this situation occurs for small values of p. Also in the dark blue region the system
fails to converge to the origin (poverty trap), anyway we have entered into the region of bimodality.

Firstly observe that once p is fixed at an intermediate level, the final dynamics of the system
becomes more complex as the difference between the two saving rates increases. In Figure 9 we
present two bifurcation diagrams w.r.t. ∆s showing how dynamics is increasingly complex if the
difference between the two saving rates is large enough. This result confirms the one reached in
previous studies where CES or VES production functions were considered (see Brianzoni et al.
(2007), (2009) and (2011)).

Secondly, parameter p is the one related to the non-constant elasticity of substitution between
production factors: it decreases as p increases. Observe that once ∆s is fixed complex dynamics can
be observed in our model for intermediate values of p, till a contact bifurcation occurs, providing
that in order for fluctuations to arise the elasticity of substitution between production factors must
not be too small. Notice that, differently from previous studies (see Brianzoni et al. (2007), (2009)
and (2011)) after the contact bifurcation occurring at an high value of p the system will converge
again to the poverty trap.

In figure 10 we consider the role of p and that of α. Both parameters are related to the properties
of the production function as p informs about the elasticity of substitution while α explains the upper
bound of the production function. Furthermore, we proved that both p and α must not be too small
for F being bimodal and multiple equilibria being owned. In fact one can observe that if the two
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Figure 8: Two dimensional bifurcation diagrams of map F in the plain (∆s, p) for the following
parameter values: δ = 0.2, α = 1, β = 0.9, n = 0.5, sw = 0.1; (a) the initial condition is kM , (b) the
initial condition is km.
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Figure 9: Bifurcation diagrams w.r.t. ∆s for the following parameter values: δ = 0.2, α = 1, β = 0.9,
n = 0.5, sw = 0.1 and p = 12; (a) the initial condition is kM , (b) the initial condition is km.
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Figure 10: Two dimensional bifurcation diagrams of map F in the plain (α, p) for the following
parameter values: δ = 0.2, sr = 0.7, sw = 0.1, β = 0.9, n = 0.5 ; (a) the initial condition is kM , (b)
the initial condition is km.

parameters do not tend to their lower bound the complex behaviour is possible while if (α, p) → (0, 2)
then F is strictly increasing.

In Figure 11 we present the bifurcation diagrams w.r.t. α for different values of p. For p = 6
we observe a period halving forming a closed loop-like structure called a primary bubble. In all the
cases a period doubbling and a period halving cascade is observed. Complex features are observed
for intermediate levels of α; in fact, as proved, α must be great enough for F to have three fixed
points and low enough for the final bifurcation to have not occurred.

5 Conclusions

In this work we considered a Solow-Swan growth model in discrete time with differential savings
between workers and shareholders as in Bohm and Kaas (2000), while using a convex-concave pro-
duction function as in Capasso et al. (2010).

The study conducted represents a further step in the knowledge of the role played by the elasticity
of substitution and the difference between saving rates in generating cycles or complex dynamics in
simple neoclassical growth models. In fact, the results herewith obtained can be compared with the
ones reached in Brianzoni et al. (2007) and (2009) using CES production function and that obtained
in Brianzoni et al. (2011) using the VES production function in the form given by Revankar (1971).
As a matter of fact, also the non-concave production function we introduced has a variable elasticity
of substitution as the VES, anyway, differently from the VES it does not satisfy the positiveness of
the second derivative.

Our study aims at confirming that the elasticity of substitution between production factors plays
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Figure 11: Bifurcation diagrams w.r.t. α for different values of p and for the following parameter
values: δ = 0.2, sr = 0.8, sw = 0.1, β = 0.9, n = 0.5 and the initial condition k0 = km; (a) p = 6,
(b) p = 7.5, (c) p = 8, (d) p = 15.
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a crucial role in economic growth theory (see Solow 1956). In fact as in all the studies above
mentioned, cycles or complex dynamics can emerge if shareholders save more than workers and the
elasticity of substitution between production factors is low enough. Anyway, a new feature is due
to the fact that, being F a bimodal function having coexisting attractors, then a final bifurcation
occurs at which complicated dynamics is rouled out for very low values such elasticity.

As with the CES (and differently from the VES) unbounded endogenous growth cannot be
observed as the coexisting attractors of the system consist of fixed points or compact sets.

Anyway, differently from the other cases studied, with non-concave production function the origin
is always a locally stable fixed point so that the system may converge to the poverty trap.

Finally, the existence of such an attractor for our bimodal map implies multistability and basins
complexity.
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