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Abstract. In the present paper we consider a special class of equations x′ =

f(t, x) when the function f : R × E → E (E is a finite-dimensional Banach
space) is V –monotone with respect to (w.r.t.) x ∈ E, i.e. there exists a

continuous non-negative function V : E × E → R+, which equals to zero only
on the diagonal, so that the numerical function α(t) := V (x1(t), x2(t)) is non-

increasing w.r.t. t ∈ R+, where x1(t) and x2(t) are two arbitrary solutions of

(1) defined and bounded on R+.
The main result of the paper contains the solution of the problem of

V.V.Zhikov (1973): every finite-dimensional V -monotone almost periodic dif-

ferential equation with bounded solutions admits at least one almost periodic
solution.

1. Introduction

The problem of the almost periodicity of solutions of non-linear almost periodic
ordinary differential equations

(1) x′ = f(t, x)

was studied by many authors (see, for example, [3, 4, 5, 6, 7, 8, 14, 20, 21] and the
bibliography therein).

In the present paper we consider a special class of equations (1), where the function
f : R × E → E (E is a finite-dimensional Banach space) is V –monotone with
respect to (w.r.t.) x ∈ E, i.e. there exists a continuous non-negative function
V : E × E → R+ which equals to zero only on the diagonal so that the numerical
function α(t) := V (x1(t), x2(t)) is non-increasing w.r.t. t ∈ R+, where x1(t) and
x2(t) are two arbitrary solutions of (1) defined and bounded on R+. This class of
non-linear differential equations (1) is interesting enough and well studied (see, for
example, [5, 6, 14, 24] and the bibliography therein).

If the function α(t) = V (x1(t), x2(t)) is strictly decreasing, then equation (1) admits
a single almost periodic solution if there exists a bounded solution on R+.
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In general case (when the function α(t) = V (x1(t), x2(t)) is non-increasing) the
proof of the existence of an almost periodic solution (under the assumption that a
bounded solution exists on R) turns out to be difficult. For example, the difficulty
consists in the fact that equation (1) might have an infinite number of bounded
solutions on R (for instance, all solutions might be bounded on R) and it is not
clear how should we pick an almost periodic solution out of this set of bounded
solutions.

Even for functions V of the form V (x1, x2) := W (x1−x2), where W is homogeneous
and convex on E, there is no known results for the euclidean space of dimension
≥ 4 (Problem of V.V.Zhikov [24]).

For dimE ≤ 3 this problem was solved by V.V.Zhikov [24] using the methods which
are not related to monotonicity.

The main result of this paper states that every V –monotone almost periodic equa-
tion (1) with bounded solutions admits at least one almost periodic solution.

Let ϕ(t, f, z) be a unique solution of V -monotone equation (1) with the initial
condition ϕ(0, u, f) = u and let it be defined on R+. In virtue of the fundamental
theory of ODEs with the holomorphic right hand side (see, for example, [9] and
[11]) the mapping ϕ possesses the following properties:

1. ϕ(0, u, f) = u;
2. ϕ(t+ τ, u, f) = ϕ(t, ϕ(τ, f, z), fτ ) for every t, τ ∈ R+ and u ∈ E, where fτ

is a τ -translation of the function f ;
3. ϕ is continuous;
4. V (ϕ(t, u1, f), ϕ(t, u2, f)) ≤ V (u1, u2) for every t ∈ R+ and u1, u2 ∈ E.

Properties 1.-4. will make the basis of our research of the abstract V -monotone
non-autonomous dynamical system.

This paper is organized as follows.

Section 2 contains the notions of cocycles, skew-product dynamical systems and
non-autonomous dynamical systems. We establish some properties of the set-valued
mappings.

In section 3 we introduce the notion of V -monotone cocycles and establish one
important property of this class of cocycles (Lemma 3.4).

Section 4 is devoted to the study of the continuous invariant sections of non-
autonomous dynamical systems. Continuous invariant sections play a very impor-
tant role in the study of the problem of the existence of almost periodic solutions
of differential equations. This section contains the main results of the paper (The-
orems 4.3 and 4.10), where we give the conditions of the existence of continuous
invariant sections of V -monotone cocycles.

In section 5 we study the problem of the existence of periodic (quasi-periodic,
almost periodic, almost automorphic, recurrent) motions of V -monotone cocycles
with the compact minimal base that contains only periodic (quasi-periodic, almost
periodic, almost automorphic, recurrent) motions. The main results of this section
are Theorems 5.11 and 5.11.
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Section 6 is devoted to the application of our general results obtained in sections
2-5 to the study of differential equations (ODEs, Caratheodory’s equations with
almost periodic coefficients, almost periodic ODEs with impulse and almost periodic
difference equations).

2. Cocycles, skew-product dynamical systems and non-autonomous
dynamical systems

Definition 2.1. Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynam-
ical systems. A mapping h : X → Y is called a homomorphism (isomorphism, re-
spectively) of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is con-
tinuous (homeomorphic, respectively) and h(π(x, t)) = σ(h(x), t) ( t ∈ T1, x ∈ X).
In this case the dynamical system (X,T1, π) is an extension of the dynamical system
(Y,T2, σ) by the homomorphism h, but the dynamical system (Y,T2, σ) is called a
factor of the dynamical system (X,T1, π) by the homomorphism h. The dynamical
system (Y,T2, σ) is called also a base of the extension (X,T1, π).

Definition 2.2. A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism
from (X,T1, π) on (Y,T2, σ) and (X,h, Y ) is a locally trivial fibering, is called a
non-autonomous dynamical system.

Remark 2.3. In the latter years in the works of I.U.Bronsteyn and his collaborators
(see, for example, [3]) an extension is called a triplet 〈(X,T, π), (Y,T, h), h〉, i.e.
the object which we call here a non-autonomous dynamical system.

Definition 2.4. A triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ), where (Y,T2, σ) is a dy-
namical system on Y , W is a complete metric space and ϕ is a continuous mapping
from T1 ×W × Y in W , possessing the following conditions:

a. ϕ(0, u, y) = u (u ∈W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ),

is called [20] a cocycle on (Y,T2, σ) with the fiber W .

Definition 2.5. Let X := W ×Y and define a mapping π : X×T1 → X as follow-
ing: π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy to see that
(X,T1, π) is a dynamical system on X which is called a skew-product dynamical
system [20] and h = pr2 : X → Y is a homomorphism from (X,T1, π) on (Y,T2, σ)
and, consequently, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical sys-
tem.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ) with
the fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W × Y ) called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions every non-autonomous differential equation generates a cocycle (a non-
autonomous dynamical system). Below we give an example of this.
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Example 2.6. Let E be a n-dimensional real or complex Euclidean space. Let us
consider a differential equation

(2) u′ = f(t, u),

where f ∈ C(R × E,E). Along with equation (2) we consider its H-class [3],[14],
[20], [23], i.e. the family of equations

(3) v′ = g(t, v),

where g ∈ H(f) = {fτ : τ ∈ R}, fτ (t, u) = f(t+ τ, u) for all (t, u) ∈ R× E and by
bar we denote the closure in C(R× E,E). We will suppose also that the function
f is regular, i.e. for every equation (3) the conditions of the existence, uniqueness
and extendability on R+ are fulfilled. Denote by ϕ(·, v, g) the solution of equation
(3) passing through the point v ∈ E at the initial moment t = 0. Then there is
a correctly defined mapping ϕ : R+ × En × H(f) → E satisfying the following
conditions (see, for example, [3], [20]):

1) ϕ(0, v, g) = v for all v ∈ E and g ∈ H(f);
2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ E, g ∈ H(f) and t, τ ∈ R+;
3) the mapping ϕ : R+ × E ×H(f) → E is continuous.

Denote by Y := H(f) and (Y,R+, σ) a dynamical system of translations (a semi-
group system) on Y , induced by the dynamical system of translations (C(R ×
En, En),R, σ). The triplet 〈E,ϕ, (Y,R+, σ)〉 is a cocycle on (Y,R+, σ) with the fiber
E. Thus, equation (2) generates a cocycle 〈E,ϕ, (Y,R+, σ)〉 and a non-autonomous
dynamical system 〈(X,R+, π), (Y,R+, σ), h〉, where X := En × Y , π := (ϕ, σ) and
h := pr2 : X → Y .

Definition 2.7. A family of subsets {Iy | y ∈ Y } (Iy ⊆ E) is called positively
invariant (negatively invariant, invariant) w.r.t. a cocycle ϕ if ϕ(t, Iy, y) ⊆ Iyt

(ϕ(t, Iy, y) ⊇ Iyt, ϕ(t, Iy, y) =⊆ Iyt) for all t ∈ T+ and y ∈ Y , where yt := σ(t, y).

Lemma 2.8. The family of subsets {Iy | y ∈ Y } is positively invariant (negatively
invariant, invariant) w.r.t. the cocycle ϕ if and only if the set J :=

⋃
{Jy | y ∈ Y },

where Jy := Iy × y, is positively invariant (negatively invariant, invariant) w.r.t.
the skew-product dynamical system (X,T+, π) (X := E × Y and π := (ϕ, sigma)).

Proof. This statement follows directly from the corresponding definitions and the
equality

πtJ =
⋃
{πtJy | y ∈ Y } =

⋃
{(ϕ(t, Iy, y), yt) | y ∈ Y }.

�

Let M ⊆ E be an arbitrary subset of E. Denote by My := {x ∈M | . There exists
y ∈ Y such that ϕ(t, x, y) ∈M for all t ∈ S+} and Minv :=

⋃
{My | y ∈ Y }.

Remark 2.9. The family of subsets {My | y ∈ Y } is positively invariant w.r.t. the
cocycle ϕ.

Lemma 2.10. For the arbitrary subset M ⊆ E the following statements are equiv-
alent:

(i) M = Minv;
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(ii) the family of subsets {My | y ∈ Y } is positively invariant.

Proof. This affirmation is straightforward. �

Lemma 2.11. Let Y be compact and M ⊆ E be closed (i.e. M = M, where by bar
we denote the closure in the space E). Then the set Minv is closed too.

Proof. Let x ∈M inv. Then there exists a sequence {xn} ⊆Minv and yn ∈ Y such
that xn ∈ Myn

and x = lim
n→+∞

xn. Taking into account that the set Y is compact

,we can suppose that the sequence {yn} is convergent and denote by y = lim
n→+∞

yn.

Since xn ∈Myn
, we have

(4) ϕ(t, xn, yn) ∈M

for all t ∈ S+. Passing to the limit in inclusion (4) as n → +∞, we obtain
ϕ(t, x, y) ∈M for all t ∈ S+, i.e. x ∈My ⊆Minv. The lemma is proved. �

Let A,B ⊆ E be two bounded subsets and β(A,B) := sup
a∈A

ρ(a,B) be a semi-

distance of Hausdorff.

Definition 2.12. A set-valued mapping F : Y → B(E) (B(E) is the family of all
bounded subsets of E) is called upper semi-continuous (lower semi-continuous) in
y0 ∈ Y , if lim

y→y0
β(F (y), F (y0)) = 0 ( lim

y→y0
β(F (y0), F (y)) = 0 ). If the set-valued

mapping F : Y → B(E) is upper and lower semi-continuous, then it is called
continuous.

Lemma 2.13. Let {My | y ∈ Y } be the family of subsets of E possessing the
following properties:

(i) the set M :=
⋃
{My | y ∈ Y } is relatively compact;

(ii) the set-valued mapping y →My is lower semi-continuous;
(iii) My 6= ∅ and is compact for all y ∈ Y .

Then the set-valued mapping y → Ky :=
⋂
{BV (p, d) | p ∈My}, where d := diamM

and BV (p, d) := {x ∈ E | V (x, p) ≤ d}, is upper semi-continuous.

Proof. Let y ∈ Y, yn → y, xn ∈ Kyn
and xn → x. We will show that x ∈ Ky, i.e.

ρ(x, p) ≤ d for all p ∈ My. In fact, since xn ∈ Kyn
, we have ρ(xn, p) ≤ d for all

p ∈Myn .

Let p ∈ Ky be an arbitrary point. Taking into consideration the lower semi-
continuity of the set-valued mapping y → Ky, we have two sequences {yn} ⊆ Y
and {pn} ⊆ E such that pn ∈ Kyn

, pn → p and yn → y. Thus,

(5) ρ(xn, pn) ≤ d

for all n ∈ N. Passing to the limit in inequality (5), we obtain ρ(x, p) ≤ d for all
p ∈My. This means that x ∈ Ky. The lemma is proved. �
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3. V –monotone cocycles

Definition 3.1. A cocycle ϕ is called V−monotone (see [5], [14], [24]), if there
exists a continuous function V : E × E → R+ with the following properties:

a. V(u1, u2) ≥ 0 for all u1, u2 ∈ E;
b. V(u1, u2) = 0 if and only if u1 = u2;
c. the function V is symmetric, i.e. V (x1, x2) = V (x2, x1) for all x1, x2 ∈ E;
d. the function V is convex, i.e. V (λx1 + (1 − λ)x2, p) ≤ λV (x1, p) + (1 −

λ)V (x2, p) for all x1, x2, p ∈ E and λ ∈ [0, 1];
e. V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x− 1, x2, x3 ∈ E;
f. there are two continuous, positively defined and strictly increasing func-

tions a, b : S+ → R+ such that a(0) = b(0) = 0, Im(a) = Im(b) (Im(a) :=
a(S+)) and a(ρ(u1, u2) ≤ V(u1, u2) ≤ b(ρ(u1, u2)) for all u1, u2 ∈ E, where
ρ(u1, u2) := |u1 − u2| is a distance on E;

g. V(ϕ(t, u1, y), ϕ(t, u2, y)) ≤ V(u1, u2) for all u1, u2 ∈ E, y ∈ Y and t ∈ S+.

Remark 3.2. 1. From the conditions c.-e. follows that by the equality d(u1, u2) :=
V (u1, u2) is defined some distance on the space E.

2. According to condition f. the distance ρ and d on the space E are topologically
equivalent.

Lemma 3.3. [5] The cocycle ϕ is V−monotone if and only if the non-autonomous
dynamical system 〈(X,S+, π), (Ω,S, σ), h〉 generated by the cocycle ϕ is V−monotone,
where V ((u1, y), (u2, y)) := V(u1, u2) for all (ui, y) ∈ X (i = 1, 2).

Lemma 3.4. Let ϕ be a V –monotone cocycle and {My | y ∈ Y } be a family of
subsets from E and the following conditions be held:

(i) {My | y ∈ Y } is negatively invariant w.r.t. the cocycle ϕ;
(ii) the set M :=

⋃
{My | y ∈ Y } is compact, i.e. it is bounded and closed.

Then there exists a relatively compact subset K of E possessing the following prop-
erties:

(i) My ⊆ Ky for all y ∈ Y ;
(ii) the set Ky is convex for any y ∈ Y ;
(iii) the family of subsets {Ky | y ∈ Y } is positively invariant w.r.t. the cocycle

ϕ.

Proof. Let y ∈ Y and

Ky :=
⋂
{BV (p, d) | p ∈My},

where d := sup{V (x1, x2) | x1, x2 ∈ M} and BV (p, d) := {q ∈ E |V (q, p) ≤ d}. It
is clear that the set Ky is bounded, closed, convex and My ⊆ Ky. We will prove
that the family {Ky | y ∈ Y } is positively invariant w.r.t. the cocycle ϕ. In fact,
if y ∈ Y and x ∈ Ky, then V (x, p) ≤ d for all p ∈ My. Since the cocycle ϕ is
V –monotone, we have

V (ϕ(t, x, y), ϕ(t, p, y)) ≤ V (x, p) ≤ d
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for all p ∈ BV (x, d), i.e. ϕ(t, x, y) ∈ BV (ϕ(t, p, y), d) for all x ∈ BV (p, d) and
p ∈ My and, consequently, ϕ(t, BV (p, d), y) ⊆ BV (ϕ(t, p, y), d). According to the
conditions of the lemma, ϕ(t,My, y) ⊇Myt and hence we have

U(t, y)Ky = U(t, y)(
⋂
{BV (p, d) | p ∈My})

⊆
⋂
{U(t, y)BV (p, d) | p ∈My}

⊆
⋂
{BV (U(t, y)p, d) | p ∈My}

⊆
⋂
{BV (q, d) | q ∈Myt} = Kyt

for all y ∈ Y and t ∈ S+.

Now we note that K ⊆ B(M,d) := {x ∈ E | sup
p∈M

ρ(p, x) ≤ d} and, consequently,

it is bounded. �

4. Invariant sections of non-autonomous dynamical systems

Let 〈(X,S+, π), (Y,S, σ), h)〉 be a non-autonomous dynamical system.

Definition 4.1. A mapping γ : Y → X is called a section (selector) of a homo-
morphism h, if h(γ(y)) = y for all y ∈ Y . The section γ of the homomorphism h
is called invariant, if γ(σ(t, y)) = π(t, γ(y)) for all y ∈ Y and t ∈ S.

Denote by Γ = Γ(Y,X) the family of all continuous sections of h, i.e. Γ(Y,X) =
{γ ∈ C(Y,X) : h ◦ γ = IdY }. We will suppose that Γ(Y,X) 6= ∅. This condition is
fulfilled in many important cases for the applications.

Remark 4.2. A continuous section γ ∈ Γ is invariant if and only if γ ∈ Γ is a
stationary point of the semigroup {St | t ∈ S+}, where St : Γ(Y,X) → Γ(Y,X) is
defined by the equality (Stγ)(y) := π(t, γ(σ(−t, y))) for all y ∈ Y and t ∈ S+.

We consider a special case of the foregoing construction. Let 〈W,ϕ, (Y,S, σ)〉 be
a cocycle over (Y,S, σ) with the fiber W and 〈(X,S+, π), (Y,S, σ), h〉 be the non-
autonomous dynamical system generated by this cocycle. Then h ◦ γ = IdY and
since h = pr2, then γ = (ψ, IdY ), where γ ∈ Γ(Y,X) and ψ : Y → W . Hence,
to each section γ there corresponds a mapping ψ : Y → W and conversely. There
being a one-to-one relation between Γ(Y,W × Y ) and C(Y,W ), where C(Y,W ) is
the space of continuous functions ψ : Y → W, we identify these two objects from
now on. The semigroup {St | t ∈ S+} naturally induces a semigroup {Qt | t ∈ S+}
of the mappings of C(Y,W ). Namely,

(Stγ)(y) = πtγ(σ−ty) = πt(ψ, IdY )(σ−ty) =
πt(ψ(σ−ty), σ−ty) = (U(t, σ−ty)ψ(σ−ty), y) = ((Qtψ)(y), y),

where U(t, y) := ϕ(t, ·, y).

Hence, St(ψ, IdY ) = (Qtψ, IdY ) with (Qtψ)(y) = U(t, σ−ty)ψ(σ−ty) (y ∈ Y ). We
have the following properties:

a. Q0 = IdC(Y,W );
b. QtQτ = Qt+τ ( t, τ ∈ S+).
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Theorem 4.3. Let 〈E,ϕ, (Y,S, σ)〉 be a V –monotone cocycle on (Y,S, σ) with the
fiber E, K ⊆ E be a bounded subset of E and the following conditions be held:

(i) Y is compact;
(ii) the family of subsets {Ky | y ∈ Y } is positively invariant w.r.t. the cocycle

ϕ;
(iii) the set Ky is nonempty, compact and convex for every y ∈ Y ;
(iv) the set-valued map y → Ky is upper continuous.

Then there exists at least one continuous invariant section of the cocycle ϕ.

Proof. Denote by K := {ψ | ψ ∈ C(Y,E) such that ψ(y) ∈ Ky}, where C(Y,E) is
a space of all continuous functions f : Y → E equipped with the sup–norm. Note
that the set K possesses the following properties:

(i) the set K is not empty according to Theorem of Michael (see, for example,
[1, 2]);

(ii) K is closed, bounded and convex in the space C(Y,E);
(iii) K is invariant with respect to the semigroup {Qt | t ∈,S+} of the mappings

of C(Y,E), i.e. QtK ⊆ K for all t ∈ S+;
(iv) K is relatively compact with respect to the weak topology of C(Y,E) (see,

for example, [13, Chapter7]).

According to Theorem 3.12 [17] the weak closure Kw of the set K coincides with
its closure in the topology of the space C(Y,E). Since K is closed in C(Y,E), we
have Kw = K, i.e. the set K is weakly compact.

Now we will prove that the mapping Q : S+ × K → K (Q(t, γ) = Qt(γ)) for all
t ∈ S+ and γ ∈ K) is weakly continuous. Really, at first we note that the mapping
Qt : K → K (t ∈ S+) is weakly continuous. Let γn ⇀ γ (the sequence {γn} weakly
converges to γ), then the sequence {γn} is uniformly bounded and γn(y) converges
to γ(y) in E for every y ∈ Y (see, for example, []). Thus we have that γn(σ(−t, y))
converges to γ(σ(−t, y)) in E (for any y ∈ Y ) and according to the continuity
of the mapping U(t, σ(−t, y)) : E → E we obtain U(t, σ(−t, y))γn(σ(−t, y) →
U(t, σ(−t, y)γ(σ(−t, y), i.e. Qtγn(y) → Qtγ(y) (for every y ∈ Y ). On the other
hand, {Qtγn} ⊆ K and, consequently, the sequence {Qtγn} is uniformly bounded.
Thus we have Qtγn ⇀ Qtγ.

Let now tn → 0 and γn ⇀ γ. Then

V (Qtnγ(y), γ(y)) = V (U(tn, σ(−tn, y))γ(σ(−tn, y), γ(y)) ≤
V (U(tn, σ(−tn, y))γ(σ(−tn, y), U(tn, σ(−tn, y))γ(y)) ≤
V (U(tn, σ(−tn, y))γ(y), γ(y)) ≤ V (γ(σ(−tn, y), γ(y)) +
V (U(tn, σ(−tn, y))γ(y), γ(y)) → 0

as n→ +∞, because the functions ϕ and γ ∈ Kw = K are continuous. Since under
the conditions of Theorem the distances d(x1, x2) := V (x1, x2) and ρ(x1, x2) :=
|x1−x2| are topologically equivalent, then Qtnγ(y) → γ(y) in E (for every y ∈ Y ).

If tn → t0 and γn ⇀ γ (i.e. γ is a weak limit (w− lim) of the sequence {γn}), then

|Qtnγn(y)−Qt0γ(y)| ≤ |Qtnγn(y)−Qt0γn(y)|+ |Qt0γn(y)−Qt0γ(y)| → 0
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as n→ +∞, according to the facts established above.

Thus, the triplet (K,S+, Q) (the space K is equipped by the weak topology of
C(Y,E)) is a semigroup dynamical system and K is a weakly compact convex
subset of the Banach space C(Y,E).

Let now tk ↓ 0. Then according to Theorem of Schauder-Tihonoff (see, for instance,
[12]) the mapping Qtn : K → K admits at least one fixed point γk ∈ K. Since K is
weakly compact, then without loss of generality we can consider that the sequence
{γk} is weakly convergent. Denote by γ := w − lim

k→+∞
γk and let t ∈ S+ be an

arbitrary number, then for every tk there exists nk ∈ Z+ and τk ∈ [0, tk) such that
t = tknk +τk and, consequently, Qtγ = w− lim

k→+∞
Qtknk+τkγk = w− lim

k→+∞
Qτkγk =

γ. The theorem is proved. �

Remark 4.4. We presented the proof of Theorem 4.3 for the case when S+ = R+.
The case when S+ = Z+ is analogous and simpler.

A function γ(u,y) : R →W represents the entire trajectory γ(u,y) of a cocycle 〈W,ϕ,
(Y,S, σ)〉 if γ(u,y)(0) = u ∈ W and ϕ(t, γ(u,y)(τ), στω) = γ(u,y)(t + τ) for t ∈ S+

and τ ∈ S.

Definition 4.5. Let {Ky | y ∈ Y } be an invariant set of the cocycle ϕ. The cocycle
ϕ is called distal on {Ky | y ∈ Y } in the negative direction, if

inf
t∈S−

ρ
(
γ(u1,y)(t), γ(u2,y)(t)

)
> 0

for any entire trajectories γ(u1,y) and γ(u2,y) with (u1, y), (u2, y) ∈ Ky (u1 6= u2)
and any y ∈ Y .

Recall that an autonomous dynamical system (Y,S, σ) is called minimal if Y does
not contain proper compact subsets which are σ-invariant.

The following lemma is due to Furstenberg (see, for example, [3, Chapter 3] or [14,
Chapter 7] Proposition 4).

Lemma 4.6. Suppose that the cocycle 〈E,ϕ, (Y,S, σ)〉 is distal on S− and that
(Y,S, σ) is compact and minimal. In addition, suppose that a compact subset J
of X is π–invariant with respect to the skew–product system (X,S+, π). Then the
set-valued mapping y → Iy := {u ∈ E : (u, y) ∈ J} is continuous.

Definition 4.7. Let {Ky | y ∈ Y } be a positive invariant set of the cocycle ϕ. A
cocycle ϕ is said to be uniformly Lyapunov stable on {Ky | y ∈ Y }, if for any ε >
0 there exists a δ = δ(ε) > 0 such that

ρ (ϕ(t, u1, y), ϕ(t, u2, y)) < ε

for all u1, u2 ∈ Ky with ρ (u1, u2) < δ, y ∈ Y and t ≥ 0.

Lemma 4.8. Let {Ky | y ∈ Y } be an invariant set of the V -monotone cocycle ϕ.
Then ϕ is distal on {Ky | y ∈ Y } in the negative direction.

Proof. We note that from the V -monotonicity of the cocycle ϕ it follows its uniform
Lyapunov stability in the positive direction. Really, let ε > 0 and δ(ε) := a−1(b(ε))
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(a and b are the functions from the definition of the V -monotonicity of the cocycle
ϕ). Then it is easy to see that the inequality ρ(u1, u2) < δ (u1, u2 ∈ Ky) implies
ρ(ϕ(t, u1, y), ϕ(t, u2, y)) < ε for all t ∈ S+ and y ∈ Y .

Now we will prove that the cocycle ϕ is distal. Suppose that it is not distal. Then
there is y0 ∈ Y , a sequence tn →∞ and entire trajectories γ(u1,y0), γ(u2,y0) with u1

6= u2 such that
lim

n→∞
ρ

(
γ(u1,y0)(−tn), γ(u2,y0)(−tn)

)
= 0.

Let ε = ρ (u1, u2) > 0 and choose δ = δ(ε) > 0 from the property of the uniform
Lyapunov stability. Then

ρ
(
γ(u1,ω0)(−tn), γ(u2,ω0)(−tn)

)
< δ

for sufficiently large n. Hence

ρ
(
ϕ(t, γ(u1,ω0)(−tn), σ−tn

ω0), ϕ(t, γ(u2,ω0)(−tn), σ−tn
ω0)

)
< ε

for t ≥ 0 and, in particular,

ε = ρ(u1, u2) = ρ(ϕ(tn, γ(u1,ω0)(−tn), σ−tn
ω0),

ϕ(tn, γ(u2,ω0)(−tn), σ−tn
ω0)) < ε

for t = tn. And this is a contradiction. The lemma is proved. �

Lemma 4.9. Let 〈E,ϕ, (Y,S, σ)〉 be a V -monotone cocycle, (Y,S, σ) be compactly
minimal and {Ky | y ∈ Y } be invariant w.r.t. the cocycle ϕ and

⋃
{Ky | y ∈ Y } be

relatively compact. Then the set-valued mapping y → Ky is continuous.

Proof. This statement directly follows from Lemmas 4.6 and 4.8. �

Theorem 4.10. Let 〈E,ϕ, (Y,S, σ)〉 be a V -monotone cocycle, Y be a compact
minimal set there are points y0 ∈ Y and x0 ∈ E such that ϕ(t, x0, y0) is bounded
on S+.

Then the cocycle ϕ admits at least one continuous invariant section.

Proof. Consider the non-autonomous dynamical system 〈(X,S+, π), (Y,S, σ), h〉,
where (X,S+, π) is a skew-product dynamical system (i.e. X := E × Y and
π := (ϕ, σ) and h := pr2 : Y → X). Since the space E is finite-dimensional, the tra-
jectory of the dynamical system (X,S+, π) passing through the point x0 := (u0, y0)
is relatively compact on S+ and, consequently, the ω-limit set ωx0 of x0 is nonempty,
compact and invariant. According to Theorem of Birkhoff the set ωx0 contains at
least one minimal set M ⊆ ωx0 . Since Y is compact and minimal, then we have
h(M) = Y . Let M := pr1(M), where pr1 is the first projection of X to E, and
My := pr1(My) (My := h−1(y)

⋂
X). Then the family of subsets {My | y ∈ Y }

is invariant w.r.t. the cocycle ϕ, since the set M is invariant w.r.t. the dynamical
system (X,S+, π). By Lemma 4.9 the set-valued mapping y →My is continuous.

If the set My0 consists of a single point, then every set My contains exactly one
point uy. It is easy to see that the function γ : Y → E defined by the equality
γ(y) := uy is the desired continuous invariant section of the cocycle ϕ.

Let now the set My0 contain more than one point. Then by the continuity of the
mapping y → My under the conditions of the theorem every subset My contains
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more than one point and, consequently, d ≥ dy := diamMy > 0 (d := diamM) for
all y ∈ Y . By Lemma 2.13 the set-valued mapping y → Ky :=

⋂
{BV (p, d) | p ∈

My}, where BV (p, d) := {u ∈ E | V (u, p) ≤ d}, is upper semi-continuous and
possesses the following properties:

(i) Ky 6= ∅, is compact and convex;
(ii) the family of subsets {Ky | y ∈ Y } is positively invariant w.r.t. the cocycle

ϕ.

According to Theorem 4.3 the cocycle ϕ admits at least one continuous invariant
section. The theorem is proved. �

Definition 4.11. The cocycle ϕ is called dissipative if there exists a positive number
r such that lim sup

t→+∞
|ϕ(t, u, y)| ≤ r for all u ∈ E and y ∈ Y .

Lemma 4.12. Let ϕ be a dissipative V -monotone cocycle. Then it admits at least
one continuous invariant section.

Proof. This affirmation follows from Theorem 4.10 because every motion ϕ(t, u, y)
of the cocycle ϕ is bounded on S+. �

5. Recurrent, almost periodic and almost automorphic motions

In this section, we discuss the problem of the existence of recurrent, almost periodic
and almost automorphic motions of V -monotone cocycles.

Let (X,T, π) be a dynamical system.

Definition 5.1. A point x ∈ X is called a τ -periodic, τ > 0, τ ∈ T) point, if xt = x
(xτ = x respectively) for all t ∈ T, where xt := π(t, x).

Definition 5.2. A number τ ∈ T is called an ε > 0 shift (almost period), if
ρ(xτ, x) < ε (respectively ρ(x(τ + t), xt) < ε for all t ∈ T).

Definition 5.3. A point x ∈ X is called almost recurrent (almost periodic), if for
any ε > 0 there exists a positive number l such that on any segment of length l there
is an ε shift (almost period) of point x ∈ X.

Definition 5.4. If the point x ∈ X is almost recurrent and the set H(x) =
{xt | t ∈ T} is compact, then x is called recurrent.

Let T = S and (X,S, π) be a bi-sided dynamical system.

Definition 5.5. A recurrent point x ∈ X is called almost automorphic if whenever
tα is a net with xtα → x∗, then x∗(−tα) → x too.

Definition 5.6. A motion ϕ(t, u0, y0) (u0 ∈ E and y0 ∈ Y ) of the cocycle ϕ is
called recurrent (almost periodic, almost automorphic, quasi-periodic, periodic), if
the point x0 := (u0, y0) ∈ X := E × Y is a recurrent (almost periodic, almost
automorphic, quasi-periodic, periodic) point of the skew-product dynamical system
(X,S+, π) ( π := (ϕ, σ)).
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Remark 5.7. We note (see, for example, [14] and [23]) that if y ∈ Y is a stationary
(τ -periodic, almost periodic, quasi periodic, recurrent) point of the dynamical system
(Y,T2, σ) and h : Y → X is a homomorphism of the dynamical system (Y,T2, σ)
onto (X,T1, π), then the point x = h(y) is a stationary (τ -periodic, almost periodic,
quasi periodic, recurrent) point of the system (X,T1, π).

Lemma 5.8. If y ∈ Y is an almost automorphic point of the dynamical system
(Y,S, σ) and h : Y → X is a homomorphism of the dynamical system (Y,S, σ) onto
(X,S+, π), then the point x = h(y) is an almost automorphic point of the system
(X,S+, π).

Proof. Let tα be a net with xtα → x∗, then we have ytα → y∗ (y := h(x) and
y∗ := h(x∗)). Since the point y is almost automorphic, then also y∗(−tα) → y and,
consequently, x∗(−tα) = h(y∗(−tα)) → h(y) = x. The lemma is proved. �

Remark 5.9. Let X := E × Y and π := (ϕ, σ). Then mapping h : Y → X is
a homomorphism of the dynamical system (Y,T2, σ) onto (X,T1, π) if and only if
h(y) = (γ(y), y) for all y ∈ Y , where γ : Y → E is a continuous mapping with the
condition that γ(yt) = ϕ(t, γ(y), y) for all y ∈ Y and t ∈ T2.

Theorem 5.10. Let Y be a compact minimal set and 〈E,ϕ, (Y,S, σ)〉 be a V -
monotone cocycle. Under the conditions of Theorem 4.10 the cocyle ϕ admits at
least one continuous invariant section γ : Y → E and the motion ϕ(t, γ(y), y)
will be stationary (τ -periodic, quasi-periodic, almost periodic, almost automorphic,
recurrent) if the point y ∈ Y is so.

Proof. This statement directly follows from Theorem 4.10, remark 5.7 and Lemma
5.8. �

Theorem 5.11. Let Y be a compact minimal set and 〈E,ϕ, (Y,S, σ)〉 be a V -
monotone dissipative cocycle. Then the cocyle ϕ admits at least one continuous
invariant section γ : Y → E and the motion ϕ(t, γ(y), y) will be stationary (τ -
periodic, quasi-periodic, almost periodic, almost automorphic, recurrent) if the point
y ∈ Y is so.

Proof. This statement directly follows from Theorem 5.10 and Lemma 4.12. �

6. Applications

6.1. ODEs.

Definition 6.1. A function W ∈ C(E,E) is called homogeneous (of order k, k ≥
1), if W (λx) = λkW (x) for all x ∈ E and λ ∈ R+ \ 0.

Denote by E a finite-dimensional Euclidean space with the scalar product 〈, 〉 and
the norm | · | generated by the scalar product. Let [E] be the space of all the linear
mappings A : E → E equipped with the operational norm.

Theorem 6.2. Let Y be a compact minimal set, F ∈ C(Y × E,E) and V ∈
C(E × E,R+) and the following conditions be held:
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(i) V (x1, x2) := W (x1−x2), where W ∈ C(E,R+) is homogeneous and convex
on E;

(ii) W (x) = 0 if and only if x = 0;
(iii) there exists y0 ∈ Y such that the equation

(6) u′ = f(y0t, u) (y0t =: σ(t, y0))

admits at least one bounded on R+ solution ϕ(t, u0, y0);
(iv) the cocycle ϕ generated by the family of equations

(7) u′ = f(yt, u) (y ∈ Y ))

is V -monotone.

Then there exists a continuous function γ : Y → E such that γ(yt) = ϕ(t, γ(y), y)
for all y ∈ Y and t ∈ R. If Y is a compact minimal set containing only τ -
periodic (quasi periodic, almost periodic, almost automorphic, recurrent) motions,
then equation (6) admits at least one τ -periodic (quasi periodic, almost periodic,
almost automorphic, recurrent) solution ϕ(t, γ(y), y).

Proof. Denote by α := min
|u|=1

W (u) and β := max
|u|=1

W (u). Under the conditions of the

theorem we have β ≥ α > 0 and, consequently, α|u1−u2|k ≤ V (u1, u2) ≤ β|u1−u2|k
for all u1, u2 ∈ E. Now to finish the proof of the theorem it is sufficient to refer to
Theorems 4.10 and 5.11. �

Example 6.3. As an example that illustrates this theorem we can consider the
following equation

u′ = g(u) + f(σty),

where f ∈ C(Y,R) and

g(u) =


(u+ 1)2 : u < −1

0 : |u| ≤ 1

−(u− 1)2) : u > 1.

All solutions of this equation are bounded on R+ (see, for example, [?, Chapt.12])
and this equation is V -monotone, where V (x1, x2) = |x1 − x2|2.

Example 6.4. Let us consider the equation

x′′ + p(x)x′ + ax = f(σtω),

where p ∈ C(R,R), f ∈ C(Ω,R), (Ω,R, σ) is a dynamical system with compact
phase space Ω and a is a positive number. Denote by y := x′ + F (x), where
F (x) :=

∫ x

0
p(s)ds. Then we obtain the system

(8)

{
x′ = y − F (x)

y′ = −ax+ f(σtω).

Theorem 6.5. Suppose the following conditions are held:

1. p(x) ≥ 0 for all x ∈ R;
2. there exist positive numbers r and k such that p(x) ≥ k for all |x| ≥ r.
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Then the following statements hold:

(i) the cocycle ϕ generated by (8) is dissipative and V−monotone;
(ii) the cocycle ϕ generated by (8) admits at least one continuous invariant

section γ : Ω → R2;
(iii) If Ω is a compact minimal set containing only τ -periodic (quasi periodic,

almost periodic, almost automorphic, recurrent) motions, then equation
(6) admits at least one τ -periodic (quasi periodic, almost periodic, almost
automorphic, recurrent) solution ϕ(t, γ(y), y).

Proof. Let X := Ω × R and 〈(X,R+, π), (Ω,R, σ), h〉 be the non-autonomous dy-
namical system generated by (8). We define the function V : X → R+ by the
equality

V (x, y) := y2 − yF (x) +
1
2
F 2(x) + ax2.

Then
d

dt
V (πt((x, ω), (y, ω))|t=0 = −p(x)[y − F (x)]2 − axF (x) + (2y − F (x))f(ω).

According to [16] (see the proof of Theorem 12.1.2), there exists R > 0 such
that d

dtV (πt((x, ω), (y, ω))|t=0 < 0 for all x2 + y2 ≥ R2 and V (ω, x, y) → +∞
as x2 + y2 → +∞. In view of [?, Chapt.5] the non-autonomous dynamical system
〈(X,R+, π), (Ω,R, σ), h〉 is dissipative.

Let V : E × E → R+ be the function defined by the equality V (u1, u2) := 〈u1 −
u2), u1 − u2〉. Then

d

dt
V (ϕ(t, u1, ω), ϕ(t, u2, ω)) = −(x1(t)− x2(t))[F (x1(t))− F (x2(t))] ≤ 0

for all t ∈ R, where xi(t) = pr1ϕ(t, ui, ω) (i = 1, 2), and, consequently,

V (ϕ(t, u1, ω), ϕ(t, u2, ω)) ≤ V (u1, u2)

for all t ∈ R+. To finish the proof it is sufficient to refer to Theorems 4.10, 5.11
and Lemma 4.12. The theorem is proved. �

6.2. Caratheodory’s differential equations. Let us consider now equation x′ =
f(t, x) with the right hand side f satisfying the conditions of Caratheodory (see, for
example,[20]). The space of all Caratheodory’s functions we denote by C(R×E,E).
Topology on this space is defined by the family of semi-norms (see [20])

dk,m(f) :=
∫ k

−k

max
|x|≤m

|f(t, x)|dt.

This space is metrizable, and on C(R × E,E) there can be defined a dynamical
system of translations (C(R× E,E),R, σ).

We consider the equation

(9)
dx

dt
= f(t, x),

where f ∈ C(R× E,E), and the family of equations

(10)
dx

dt
= g(t, x),
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where g ∈ H(f) := {fτ | τ ∈ R }, and fτ is a τ−translation of the function f w.r.t.
the variable t, i.e. fτ (t, x) := f(t+ τ, x) for all t ∈ R and x ∈ E, and by bar there
is denoted the closure in the space C(R × E,E). Denote by ϕ(t, x, g) the solution
of equation (10) with the initial condition ϕ(0, g, x) = x. Then ϕ is a cocycle on E
(see, for example [20]) with the base H(f). Hence, we may apply the general results
from sections 1-4 to the cocycle ϕ generated by equation (9) with a Caratheodory’s
right hand side and will obtain some results for this type of equations.

For instance, the following assertion holds.

Theorem 6.6. Let f ∈ C(R × E,E) be an almost periodic function in t ∈ R (in
the sense of Stepanoff [14]) uniformly w.r.t. x on compacts from E, i.e. for every
ε > 0 and compact K ⊂ E the set

T(ε, f,K) := {τ ∈ R |
∫ 1

0

max
x∈K

|f(t+ τ + s, x)− f(t+ s, x)|ds < ε }

is relatively dense on R. Suppose that

1. 〈f(t, x1)− f(t, x2), x1 − x2〉 ≤ 0 for all t ∈ R and x1, x2 ∈ E;
2. there exists a positive constant r and a function c : [r,+∞) → (0,+∞)

such that 〈f(t, u), u〉 ≤ −c(|u|) for all |u| > r.

Then on E equation (9) generates a cocycle ϕ which is dissipative and equation (9)
admits at least one stationary (τ−periodic, quasi-periodic, almost periodic) solution,
if the function f ∈ C(R × E,E) is stationary (τ−periodic, quasi-periodic, almost
periodic) in t ∈ R uniformly w.r.t. x on compacts from E.

Proof. This theorem is proved using the same arguments that we used in the proof
of Theorem 6.2. �

6.3. ODEs with impulse. Let {tk}k∈Z be a two-sided sequence of real numbers,
p : R → Rn be a continuously differentiable on every interval (tk, tk+1) function,
continuous to the right in every point t = tk, bounded on R, almost periodic in the
sense of Stepanoff and

p′(t) =
∑
k∈Z

skδtk
,

where sk := p(tk + 0)− p(tk − 0).

Consider the equation with impulse
dx

dt
= f(t, x) +

∑
k∈Z

skδtk

or, what is equivalent,

(11)
dx

dt
= f(t, x) + p′(t)

and parallely let us consider the family of equations

(12)
dx

dt
= g(t, x) + q′(t),

where (g, q) ∈ H(f, p) := {(fτ , pτ )|τ ∈ R} and by bar we denote the closure in the
product-space C(R× E,E)× C(R, E).
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Denote by ϕ(t, x, g, q) the unique solution of the equation (12) (see [10] and [18])
satisfying the initial condition ϕ(0, x, g, q) = x. This solution is continuous on every
interval (tk, tk+1) and continuous to the right in every point t = tk (see [10] and
[18]).

By the transformation

(13) x := y + q(t)

we can bring equation (12) to the equation

(14)
dy

dt
= g(t, y + q(t)).

Theorem 6.7. Let f ∈ C(R × E,E) be a Bohr’s almost periodic function in t ∈
R uniformly with respect to x on every compact from E and p ∈ C(R, E) be a
Stepanoff’s almost periodic function. Suppose that 〈f(t, x1)− f(t, x2), x1 − x2〉 ≤ 0
for all t ∈ R, x1, x2 ∈ E and that there exist positive numbers α,L1, L2 and r such
that

〈f(t, x), x〉 ≤ −L1|x|α+1 and |f(t, x)| ≤ L2|x|α

for all t ∈ R and |x| > r (x ∈ E).

Then the cocycle generated by equation (11) is dissipative and equation (11) admits
at least one stationary (τ - periodic, quasi-periodic, almost periodic in the sense of
Stepanoff) solution, if the function (f, p) ∈ C(R×E,E)× C(R, E) is stationary (τ
- periodic, quasi-periodic, almost periodic in t ∈ R) uniformly w.r.t. x on compacts
from E.

Proof. Let ϕ(t, x, g, q) be the cocycle generated by the family of equations (12) and
ϕ̃(t, y, g, q) be the cocycle generated by the family of equations (14). Then we have
the following equality

(15) ϕ(t, x, g, q) = q(t) + ϕ̃(t, x− q(0), g, q)).

We will show that it is possible to apply Theorem6.6 to the equation

dy

dt
= f(t, y + p(t)).

Really,
〈f(t, y1 + p(t))− f(t, y2 + p(t)), y1 − y2〉

for all t ∈ R and y1, y2 ∈ Rn, and

(16) 〈f(t, y + p(t)), y〉 = 〈f(t, y + p(t)), y + p(t)〉 − 〈f(t, y + p(t)), p(t)〉 ≤

−L1|y + p(t)|α+1 + L2‖p‖|y + p(t)|α

for all t ∈ R and |y + p(t)| > r, where ‖p‖ := sup{|p(t)| | t ∈ R }. Taking into
account the fact that the function p is bounded on R, from (16) we obtain the
existence of positive numbers R (that are sufficiently large) and L0

1, L
0
2 such that

〈f(t, y + p(t)), y〉 ≤ −L0
1|y|α+1 and 〈f(t, y + p(t))〉 ≤ L0

2|y|α

for all t ∈ R and |y| > R. To finish the proof of the theorem it is sufficient to apply
Theorem 6.6 and take into consideration the relations (13) and (15). The theorem
is proved. �
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6.4. Difference equations.

Example 6.8. Consider the equation

(17) un+1 = f(n, un)

where f ∈ C(Z×E,E); here C(Z×E,E) is the space of all continuous functions Z×
E → E) equipped with a compact-open topology. This topology can be metrizable.
For example, by the equality

d(f1, f2) :=
+∞∑
1

1
2n

dn(f1, d2)
1 + dn(f1, d2)

,

where dn(f1, d2) := max{ρ(f1(k, u), f2(k, u)) | k ∈ [−n, n], |u| ≤ n}, there is defined
a distance on C(Z×E,E) which generates the topology of point-wise convergence
with respect to n ∈ Z uniformly with respect to u on every compact from E.

Along with equation (17), we will consider the H-class of equation (17)

(18) vn+1 = g(n, vn) (g ∈ H(f)),

where H(f) = {fm | m ∈ Z} and the over bar denotes the closure in C(Z× E,E),
and fm(n, u) = f(n+m,u) for all n ∈ Z and u ∈ E. Denote by (C(Z×E,E),Z, σ)
a dynamical system of translations. Here σ(m, g) := gm for all m ∈ Z and g ∈
C(Z× E,E).

Let Ω be the hull H(f) of a given function f ∈ C(Z×E,E) and denote the restriction
of (C(Z×E,E),R, σ) on Ω by (Ω,Z, σ). Let F : E × Ω → E be a continuous map
defined by F (u, g) = g(0, u) for g ∈ Ω and u ∈ E. Then equation (18) can be
rewritten in this form:

un+1 = F (un, σ
nω),

where ω := g and σnω := gn.

Definition 6.9. A function f ∈ C(Z×E,E) is said to be periodic (almost periodic,
recurrent), if f ∈ C(Z × E,E) is a periodic (almost periodic, recurrent) point of
the dynamical system of translations (C(Z× E,E),Z, σ).

If the function f ∈ C(Z×E,E) is periodic (almost periodic, recurrent), then the set
Ω := H(f) is the compact minimal set of the dynamical system (C(Z×E,E),Z, σ)
consisting of periodic (almost periodic, recurrent) points.

Theorem 6.10. Let the function f ∈ C(Z × E,E) be periodic (almost peri-
odic,almost automorphic, recurrent) w.r.t. n ∈ Z uniformly w.r.t. u on compacts
from E. If |f(n, u1) − f(n, u2)| ≤ |u1 − u2| for all n ∈ Z and u1, u2 ∈ E and
equation (17) admits a bounded on Z+ solution, then it admits also at least one
periodic (almost periodic,almost automorphic, recurrent) solution.

Proof. Note that under the condition of the theorem the cocycle ϕ generated by
equation (17) satisfies the following inequality

|ϕ(n, u1, g)− ϕ(n, u2, g)| ≤ |u1 − u2|
for all u1, u2 ∈ E, n ∈ Z+ and g ∈ H(f), i.e. the cocycle 〈E,ϕ, (H(f),Z, σ)〉 is
V -monotone, where V (u1, u2) := |u1 − v2|. Now to finish the proof of the theorem
it is sufficient to apply Theorems 4.10 and Lemma 4.12. �
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