
Mathematics and Computers in Simulation 230 (2025) 386–399 

A
0

Contents lists available at ScienceDirect

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom

Original articles

Regular and chaotic dynamics in a 2D discontinuous financial
market model with heterogeneous traders
Iryna Sushko a,∗, Fabio Tramontana b

a Institute of Mathematics, NAS of Ukraine, and Kyiv School of Economics, Kyiv, Ukraine
b Department of Economics, Society and Politics, University of Urbino, Italy

A R T I C L E I N F O

Keywords:
Two-dimensional discontinuous map
Bifurcation structure of the parameter space
Border-collision bifurcations
Regular and chaotic attractors
Degenerate bifurcations
Financial market model with heterogeneous
traders

A B S T R A C T

We develop a financial market model where three types of traders operate simultaneously:
fundamentalists and chartists of two types, namely, trend followers and contrarians. The
dynamics of this model is described by a two-dimensional discontinuous map defined by two
linear functions, where one acts in the partition between two (parallel) discontinuity lines
and the other one acts outside this partition. Our analysis shows that despite the linearity
of the map components, its dynamics can be quite complex, with various, possibly coexisting
attracting cycles and chaotic attractors. As a first step towards the understanding how the
overall bifurcation structure observed in the parameter space of the map is organized, we obtain
analytically the boundaries of periodicity regions related to the simplest attracting period-
𝑛 cycles, 𝑛 ≥ 3, with one point in the middle partition and 𝑛 − 1 points outside it. These
boundaries can be related to border-collision bifurcations (when a point of the cycle collides
with a discontinuity line) as well as to degenerate bifurcations (associated with eigenvalues
on the unit circle). We show also some elements of period-adding and period-incrementing
bifurcation structures for which the cycles mentioned above are basic. From an economic point
of view, our study confirms that a fairly simple financial market model with heterogeneous
agents is able to produce complicated boom-bust dynamics typical of real financial markets.

1. Introduction

A time series of asset prices which are at the same time both bounded and hardly predictable can be obtained by building dynamic
models with regime switching, that is described by piecewise-defined dynamic equations, and not necessarily by introducing some
nonlinearities into the equations. The pioneering contribution to this field is the work of Huang and Day [11].1 In particular, they
consider traders whose reaction to the misalignment (i.e. difference between the current price and its fundamental value) depends
upon the crossing or not of a certain price threshold. Their model is piecewise-linear (with five branches) and allows us to obtain
chaotic dynamics of the asset price. This model has been more recently extended in several papers by Tramontana et al. [27,28,29],
where asymmetry in the reaction of the traders is introduced. When the asset is overvalued or undervalued the reactions can be
different, and this produces interesting dynamics also in the case of two or three branches. On the other hand, [12,13] replicate the
so-called sudden, disturbing and smooth crisis by increasing the number of branches of the piecewise-linear model. All these models

∗ Corresponding author.
E-mail addresses: sushko@imath.kiev.ua (I. Sushko), fabio.tramontana@uniurb.it (F. Tramontana).

1 While [6] is more popular and is a seminal paper for the literature on financial markets populated with heterogeneous agents, [11] is quite important
because in this work they obtain similar results of their former work without introducing nonlinearities in the picture and replacing them with piecewise-linear
behavioral rules.
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share the feature of being one-dimensional (1D for short). In the last years, several authors have started building financial market
models with heterogeneous traders, leading to two-dimensional (2D for short) systems. With two dimensions, in fact, it is possible
to introduce into the picture also other kinds of traders like trend-followers and contrarians. Among papers associated with this
direction of the research, [1,8–10,16] deserve to be mentioned for their success in replicating several important stylized facts of the
financial markets, such as fat tails, linear and nonlinear dependence of returns in time, volatility clustering (see, e.g., [5,14,15]).

A financial market model proposed in the present paper deals with three types of traders which are fundamentalists and chartists
f two types — trend followers and contrarians. The dynamics of this model is defined by a 2D piecewise-linear map 𝐹 with two

parallel discontinuity lines dividing the state space into three partitions. It is worth mentioning that the dynamics of a financial
market model considered in [10] is defined by a map belonging to the same class. However, in [10], the maps acting in three
partitions have the same Jacobian matrix and differ only by the offsets, while in our case, one map acts in the middle partition and
the other one outside it, and these two maps have different Jacobian matrices and offsets. Moreover, depending on the parameters,
map 𝐹 can have various types of invertibility, with zones having 0, 1 or 2 preimages, while the map studied in [10] has only zones

ith 0 or 1 preimages. Recall that in a generic 2D nonlinear map, the zones associated with the different number of preimages are
eparated by the critical lines (see [18] which in our case are images of the discontinuity lines. Recall also that the invertibility
f a map is an important characteristic: for example, an attractor of a 2D invertible map can have points neither in zone with 0
reimages, nor in any its image.

The properties mentioned above as well as other properties of map 𝐹 , lead to a rather complex bifurcation structure of the
arameter space, with periodicity regions, often overlapping, associated with various attracting cycles, and regions related to chaotic
ttractors of different kinds. In this structure, due to the linearity of the components of map 𝐹 , the boundaries of a periodicity region
an be related either to a border collision bifurcation2 occurring when some periodic point collides with a discontinuity line, or to
degenerate bifurcation (see [25]) related to an eigenvalue +1, −1 or to a pair of complex-conjugate eigenvalues on the unit circle.
he present paper can be seen as a first step towards the understanding of the organizing principles of this structure. Studies related
o various bifurcation structures in 2D discontinuous maps can also be found in [1,2,4,17,21,23,26], etc.

This paper is organized as follows. In the next section, we describe some basic steps in the construction of the financial
arket model with three kinds of speculators (fundamentalists, trend-followers and contrarians), leading to a 2D piecewise linear
iscontinuous map 𝐹 . Then, in Section 3 we present the simplest properties of 𝐹 which is defined by two linear maps: map 𝐹𝑀
cts in the middle partition bounded by two parallel discontinuity lines, and map 𝐹𝐸 acts outside this partition. In particular, we
btain the stability conditions of the actual and virtual fixed points of map 𝐹 , describe center bifurcation of the actual fixed point,
xamine different kinds of invertibility of 𝐹 depending on the parameters. A few examples of the bifurcation structures obtained
umerically are presented in Section 4, in particular, elements of period-adding3 and period-incrementing4 bifurcation structures
re illustrated by 1D bifurcation diagrams. Basic cycles for these structures can be represented by the symbolic sequences 𝑀𝐸𝑛−1 for
≥ 3, where the symbol 𝑀 corresponds to a periodic point in the middle partition and the symbol 𝐸 to periodic points which are

xternal to this partition. In Section 5 we explain how to analytically obtain the existence and stability boundaries of the periodicity
egions associated with attracting cycles 𝑀𝐸𝑛−1. As already mentioned, these boundaries can be related either to border-collision
ifurcations (associated with a collision of some point of a cycle 𝑀𝐸𝑛−1 with a discontinuity line) or to degenerate bifurcations.
ection 6 concludes.

. Description of the model

We model a financial market of one asset with a market maker and three kinds of speculators. The market maker adjusts the
rice (𝑃 ) of the asset with respect to the total excess demand (𝐷) of traders by using the following linear trading rule:

𝑃𝑡+1 = 𝑃𝑡 + 𝛼𝐷𝑡, (1)

here 𝛼 > 0 is a price adjustment parameter.
Concerning speculators, we consider a group of fundamentalists and two groups of chartists.
Fundamentalists buy the asset when it is underpriced (that is, the price is lower than the fundamental value 𝑃 ∗) and sell it when

t is overpriced (that is, the price is higher than the fundamental value). Their excess demand is:

𝐷𝑓 = 𝑓1 + 𝑓2(𝑃 ∗ − 𝑃𝑡) (2)

here 𝑓2 > 0 is their reactivity with respect to the misalignment, while 𝑓1 captures some kind of optimism/pessimism when the
rice is equal to its fundamental value (see [27,29]).

We consider two groups of chartists. They both observe the most recent price trend (𝑃𝑡 − 𝑃𝑡−1) but while a group bets on
he persistence of the trend (trend-followers), the second one does exactly the opposite, betting on a trend reversal (contrarians).

2 This term is introduced in [19], see also [20]. Border collision bifurcations, which are characteristic for nonsmooth maps, are nowadays actively studied
oth from theoretical and applied points of view (see, e.g. [3,7,22,30], to cite a few).

3 Recall that in a period-adding bifurcation structure periodicity regions related to attracting cycles are ordered according to Farey summation rule applied
o rotation numbers of the related cycles. In this way, between periodicity regions associated with rotation numbers 𝑚1∕𝑛1 and 𝑚2∕𝑛2 with |

|

𝑚1𝑛2 − 𝑚2𝑛1|| = 1
(so-called Farey neighbors) there exists a periodicity region related to cycles with rotation number (𝑚1 + 𝑚2)∕(𝑛1 + 𝑛2) (see [3] for details).

4 Period-incrementing structure is formed by periodicity regions ordered according to period of the cycles, which is increasing by 𝑘 ≥ 1 (incrementing step),

where each two neighbor periodicity regions are partially overlapping.
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Moreover, following [16], we assume that their reactivity depends upon the absolute value of the trend. When it is larger than a
certain threshold5 (𝑘) they react more strongly to the market signal.

The excess demand of trend-followers (or extrapolators) is:

𝐷𝑒
𝑡 =

{

𝑎1 + 𝑏1(𝑃𝑡 − 𝑃𝑡−1) if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

≤ 𝑘
𝑎2 + 𝑏2(𝑃𝑡 − 𝑃𝑡−1) if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

> 𝑘
(3)

ith reactivities 𝑏2 ≥ 𝑏1 ≥ 0 in order to characterize a more aggressive behavior when the trend is larger than the threshold.
arameters 𝑎1 and 𝑎2 capture optimism/pessimism when the trend is less or more accentuated, respectively.

The last excess demand we consider is the one of contrarians, which is the following:

𝐷𝑐
𝑡 =

{

𝑐1 + 𝑑1(𝑃𝑡−1 − 𝑃𝑡) if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

≤ 𝑘
𝑐2 + 𝑑2(𝑃𝑡−1 − 𝑃𝑡) if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

> 𝑘
(4)

with reactivities 𝑑2 ≥ 𝑑1 ≥ 0 in order to characterize, similarly to the case of trend-followers, a more aggressive behavior when the
rend is larger than the threshold. Parameters 𝑐1 and 𝑐2 capture optimism/pessimism when the trend is less or more accentuated,

respectively.
The total excess demand is obtained by summing up the three excess demands:

𝐷𝑡 = 𝐷𝑓
𝑡 +𝐷𝑒

𝑡 +𝐷𝑐
𝑡

and by replacing excess demands (2), (3) and (4) into the market maker Eq. (1) we get:

𝑃𝑡+1 =

{

𝑃𝑡 + 𝛼
[

𝑓1 + 𝑓2(𝑃 ∗ − 𝑃𝑡) + 𝑎1 + 𝑏1(𝑃𝑡 − 𝑃𝑡−1) + 𝑐1 + 𝑑1(𝑃𝑡−1 − 𝑃𝑡)
]

if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

≤ 𝑘,

𝑃𝑡 + 𝛼
[

𝑓1 + 𝑓2(𝑃 ∗ − 𝑃𝑡) + 𝑎2 + 𝑏2(𝑃𝑡 − 𝑃𝑡−1) + 𝑐2 + 𝑑2(𝑃𝑡−1 − 𝑃𝑡)
]

if |

|

𝑃𝑡 − 𝑃𝑡−1
|

|

> 𝑘,
(5)

hich is a second order piecewise-defined difference equation regulating the dynamics of the price as a consequence of the trading
trategies adopted by the three groups of traders.

By defining 𝑥 ≡ 𝑃 − 𝑃 ∗ as the deviation from the fundamental and the lagged variable 𝑦𝑡 = 𝑥𝑡−1 we obtain the following map
fter some algebraic manipulation:

⎧

⎪

⎨

⎪

⎩

𝑥′=

{

𝛼
(

𝑎1 + 𝑐1 + 𝑓1 + 𝑓2𝑃 ∗) + 𝑥
(

1 + 𝛼𝑏1 − 𝛼𝑑1 − 𝛼𝑓2
)

+ 𝑦𝛼
(

𝑑1 − 𝑏1
)

if |𝑥 − 𝑦| ≤ 𝑘,

𝛼
(

𝑎2 + 𝑐2 + 𝑓1 + 𝑓2𝑃 ∗) + 𝑥
(

1 + 𝛼𝑏2 − 𝛼𝑑2 − 𝛼𝑓2
)

+ 𝑦𝛼
(

𝑑2 − 𝑏2
)

if |𝑥 − 𝑦| > 𝑘,
𝑦′= 𝑥

(6)

It is easy to see that in (6) we can set 𝛼 = 1 since all the parameters (except for 𝑘) can be redefined as 𝑎1 ≡ 𝛼𝑎1, 𝑎2 ≡ 𝛼𝑎2, etc. The
parameters must satisfy the following conditions:

𝑑1,2 > 0, 𝑏1,2 > 0, 𝑑2 ≥ 𝑑1, 𝑏2 ≥ 𝑏1, 𝑘 > 0,
𝑓1 ∈ R, 𝑓2 > 0, 𝑎1,2 ∈ R, 𝑐1,2 ∈ R (7)

3. Preliminaries

The map given in (6) is defined by two linear maps denoted 𝐹𝑀 and 𝐹𝐸 . Here index 𝑀 refers to the middle partition

𝐷𝑀 = {(𝑥, 𝑦) ∶ |𝑥 − 𝑦| ≤ 𝑘}

bounded by two discontinuity lines (also called critical lines of rank −1) denoted

𝐶−
−1 = {(𝑥, 𝑦) ∶ 𝑦 = 𝑥 − 𝑘}, 𝐶+

−1 = {(𝑥, 𝑦) ∶ 𝑦 = 𝑥 + 𝑘}

and index 𝐸 refers to the external region

𝐷𝐸 = {(𝑥, 𝑦) ∶ |𝑥 − 𝑦| > 𝑘}

which can be spit in two partitions, 𝐷𝐸 = 𝐷𝐿 ∪𝐷𝑈 :

𝐷𝐿 = {(𝑥, 𝑦) ∶ 𝑦 < 𝑥 − 𝑘}, 𝐷𝑈 = {(𝑥, 𝑦) ∶ 𝑦 > 𝑥 + 𝑘}

It is convenient to change variables, 𝑥 ∶= 𝑥 − 𝑥∗, 𝑦 ∶= 𝑦 − 𝑦∗, where 𝑥∗ = 𝑦∗ =
(

𝑎1 + 𝑐1 + 𝑓1 + 𝑃 ∗𝑓2
)

∕𝑓2, shifting the fixed point
of the map defined in the middle partition to the origin. After this shift, map 𝐹 can be defined as follows:

𝐹 ∶ (𝑥, 𝑦) → 𝐹 (𝑥, 𝑦) =
{

𝐹𝑀 (𝑥, 𝑦), if (𝑥, 𝑦) ∈ 𝐷𝑀
𝐹𝐸 (𝑥, 𝑦), if (𝑥, 𝑦) ∈ 𝐷𝐸

(8)

where

𝐹𝑀 ∶
(

𝑥
𝑦

)

→

(

𝑥
(

𝑏 − 𝑘1
)

+ 𝑦𝑘1
𝑥

)

5 For simplicity we assume the same threshold 𝑘 for both contrarians and trend-followers. This prevents the creation of too many branches for the final map.
388 
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𝐹𝐸 ∶
(

𝑥
𝑦

)

→

(

𝑥
(

𝑏 − 𝑘2
)

+ 𝑦𝑘2 + 𝑑
𝑥

)

ere, for short, we introduced new aggregate parameters:

𝑘1 = 𝑑1 − 𝑏1, 𝑘2 = 𝑑2 − 𝑏2, 𝑏 = 1 − 𝑓2, 𝑑 = (𝑎2 + 𝑐2) − (𝑎1 + 𝑐1)

ince 𝑓2 > 0 (see (7)), it has to be 𝑏 < 1, while parameters 𝑘1, 𝑘2, 𝑑 and 𝑘 can take any real value. Moreover, one could get rid of
arameter 𝑑 or 𝑘, e.g., introducing new variables 𝑥 ∶= 𝑥∕𝑑, 𝑦 ∶= 𝑦∕𝑑, 𝑑 ≠ 0, and a new parameter ℎ ∶= 𝑘∕𝑑. However, we prefer to
eep both these parameters in our considerations. Basically, parameter 𝑘1 (resp. 𝑘2) can be interpreted as the excess of reactivity of
rend-followers with respect to contrarians in the presence of a positive (resp. negative) trend. By contrast, the parameter 𝑑 represents
he difference between (𝑎2 + 𝑐2) (representing the optimism, if positive, or pessimism, if negative, of chartists, both trend-followers
nd contrarians, when the trend is more accentuated than the threshold 𝑘) and (𝑎1 + 𝑐1) (representing the optimism, if positive, or
essimism, if negative, of chartists when the trend is less accentuated than the threshold 𝑘. Below we suppose that 𝑑 > 0 since for
< 0 map 𝐹 has qualitatively similar dynamics (its invariant sets are symmetric with respect to the origin to those for 𝑑 > 0).

roperty 1. The fixed point of 𝐹𝑀 denoted 𝑂(0, 0) is the unique actual fixed point of 𝐹 , since the fixed point of map 𝐹𝐸 , denoted 𝑉 (𝑥∗𝐸 , 𝑦
∗
𝐸 ),

ith

𝑥∗𝐸 = 𝑦∗𝐸 = 𝑑
1 − 𝑏

(9)

belongs to the middle partition 𝐷𝑀 (namely, to the main diagonal), thus, it is always a virtual fixed point for 𝐹 .

Property 2. The fixed point 𝑂 of map 𝐹 is attracting iff −1 < 𝑘1 < (1 + 𝑏)∕2 (this range is non empty for 𝑏 > −3).

It is easy to check this property considering the Jacobian matrix 𝐽𝑀 of 𝐹𝑀 ∶

𝐽𝑀 =
(

𝑏 − 𝑘1 𝑘1
1 0

)

(10)

ts characteristic polynomial 𝑃 (𝜆) = 𝜆2 −
(

𝑏 − 𝑘1
)

𝜆 − 𝑘1 has roots (eigenvalues) satisfying |

|

𝜆1,2|| < 1 iff {det 𝐽𝑀 < 1, 𝑃 (−1) >
, 𝑃 (1) > 0} that corresponds to {𝑘1 > −1, 𝑘1 < (1 + 𝑏)∕2, 𝑏 < 1}. Here 𝑏 < 1 follows from (7), thus the stability conditions

for 𝑂 are −1 < 𝑘1 < (1 + 𝑏)∕2. Note that the eigenvalues 𝜆1,2 = (𝑏 − 𝑘1 ±
√

(𝑏 − 𝑘1)2 + 4𝑘1)∕2 are complex-conjugate for
𝑏 − 2 − 2

√

1 − 𝑏 < 𝑘1 < 𝑏 − 2 + 2
√

1 − 𝑏.
Changing 𝑘1 to 𝑘2 in (10) we get the Jacobian matrix 𝐽𝐸 of map 𝐹𝐸 . Clearly, the stability conditions −1 < 𝑘2 < (1 + 𝑏)∕2 of

he virtual fixed point 𝑉 are also important for the dynamics of 𝐹 since these conditions govern the behavior of the trajectories in
egion 𝐷𝐸 .

roperty 3. For 𝑘1 = −1, −3 < 𝑏 < 1, the fixed point 𝑂 of map 𝐹 undergoes a center bifurcation (𝜆1.2 are complex-conjugate and
𝜆1.2|| = 1). In this case, (a) if the rotation number of 𝐽𝑀 is rational, say 𝑚∕𝑛 (that holds for 𝑏 = 2 cos(2𝜋𝑚∕𝑛) − 1), then there exists an
nvariant polygon 𝑃𝑚∕𝑛 filled with 𝑛-cycles with rotation number 𝑚∕𝑛, bounded by the generating segments of the discontinuity lines 𝐶−

−1, 𝐶
+
−1

nd their images by 𝐹𝑀 ; (b) if the rotation number of 𝐽𝑀 is irrational, then there exists an invariant region  filled with invariant ellipses
ny point of which is quasiperiodic, bounded by an ellipse with center at 𝑂 which is tangent to 𝐶−

−1, 𝐶
+
−1 and to all their images by 𝐹𝑀 .

Property 3 is illustrated in Fig. 1 : in (a) an invariant polygon 𝑃1∕8 (filled with 8-cycles with rotation number 1∕8) coexists with
n attracting 7-cycle, and in (b) an invariant region  (filled with quasiperiodic trajectories where each one is located on the related
nvariant ellipse) coexists with attracting 5- and 12-cycles. In both figures preimages of the invariant regions are shown in white.
or details related to center bifurcations we refer to [24].

The critical lines, which are the images of the discontinuity lines 𝐶± by 𝐹𝑀 and 𝐹𝐸 , are denoted, respectively, as 𝐶𝑀± = 𝐹𝑀 (𝐶±
−1)

nd 𝐶𝐸± = 𝐹𝐸 (𝐶
±
−1):

𝐶𝑀− ∶ 𝑦 = (𝑥 + 𝑘𝑘1)∕𝑏, 𝐶𝑀+ ∶ 𝑦 = (𝑥 − 𝑘𝑘1)∕𝑏
𝐶𝐸− ∶ 𝑦 = (𝑥 + 𝑘𝑘2 − 𝑑)∕𝑏, 𝐶𝐸+ ∶ 𝑦 = (𝑥 − 𝑘𝑘2 − 𝑑)∕𝑏

ll these lines have the same slope 𝑠 = 1∕𝑏 (positive for 𝑏 > 0 and negative for 𝑏 < 0). In this way, the region 𝐷𝑀 bounded by
he discontinuity lines 𝐶±

−1 is mapped by 𝐹𝑀 and 𝐹𝐸 in two strips, say, 𝑆𝑀 and 𝑆𝐸 , bounded by 𝐶𝑀± and 𝐶𝐸±, respectively (see
ig. 2).

The invertibility of map 𝐹 depends on the mutual location of the strips 𝑆𝑀 and 𝑆𝐸 . For example, if 𝑆𝑀 ∩ 𝑆𝐸 = ∅ (as e.g., in
ig. 2(a)), then map 𝐹 belongs to a class of maps with 𝑍1-𝑍2-𝑍1-𝑍0-𝑍1 type of invertibility,6 where 𝑍0 = 𝑆𝐸 (shown white in
ig. 2(a)), so that any point of 𝑆𝐸 has no preimages. Map 𝐹 has the same type of invertibility if 𝑆𝐸 and 𝑆𝑀 are partially overlapping
as in Fig. 2(d)), while if 𝑆𝑀 ⊂ 𝑆𝐸 (as in Fig. 2(b)), then map 𝐹 is of 𝑍1-𝑍0-𝑍1-𝑍0-𝑍1 type, that is, there are two strips with no

preimages. This information is important: since points in 𝑍0 have no preimages, an invariant set of map 𝐹 cannot have points in
𝑍0, and if map 𝐹 is invertible, then its invariant set cannot have point also in 𝐹 𝑖(𝑍0) for any 𝑖 ≥ 1. In particular, if in such a case

6 Index 𝑖 in 𝑍 indicates the number of preimages in zone 𝑍 .
𝑖 𝑖
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Fig. 1. Center bifurcation of the fixed point 𝑂: (a) an invariant polygon 𝑃1∕8 (shown gray with white preimages) filled with 8-cycles, coexists with an attracting
7-cycle (its basin is shown green); (b) an invariant region  (shown gray with white preimages) filled with quasiperiodic trajectories, coexists with attracting 5-
and 12-cycles (their basins are shown yellow and green, respectively). Here at 𝑘1 = −1, 𝑑 = 1, 𝑘 = 0.5 and (a) 𝑏 =

√

2 − 1, 𝑘2 = −0.6, (b) 𝑏 = 0.5, 𝑘2 = 0.562. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Schematic representation of the images of region 𝐷𝑀 (bounded by the discontinuity lines 𝐶−
−1 and 𝐶+

−1): the strip 𝑆𝑀 = 𝐹𝑀 (𝐷𝑀 ) is bounded by 𝐶𝑀+

and 𝐶𝑀−, and the strip 𝑆𝐸 = 𝐹𝐸 (𝐷𝑀 ) is bounded by 𝐶𝐸+ and 𝐶𝐸−. Here the regions shown white, gray and yellow correspond to 𝑍0 , 𝑍1 and 𝑍2 zones, whose
points have 0, 1 and 2 preimages, respectively. (a) (𝑘1 , 𝑘2) ∈ 𝑅I, (b) (𝑘1 , 𝑘2) ∈ 𝑅II, (c) (𝑘1 , 𝑘2) ∈ 𝑅III , (d) (𝑘1 , 𝑘2) ∈ 𝑅IV, where the regions 𝑅I, 𝑅II, 𝑅III and 𝑅IV
are specified in Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

map 𝐹 has an attractor, it must belong to a residual set 𝛺 = R2∖ ∪∞
𝑖=0 𝐹

𝑖(𝑍0) (as e.g., in Fig. 4(b)). Similar cases are described in

[9,10].
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Fig. 3. Schematic representation of the partitioning of the (𝑘1 , 𝑘2)-parameter plane into regions related to invertibility of map 𝐹 ∶ it is of 𝑍1-𝑍2-𝑍1-𝑍0-𝑍1 type
in 𝑅I and in 𝑅IV (see examples in Fig. 2(a) and Fig. 2(d), respectively), 𝑍1-𝑍0-𝑍1-𝑍0-𝑍1 type in 𝑅II (see Fig. 2(b)), and 𝑍1-𝑍2-𝑍1-𝑍2-𝑍1 type in 𝑅III (Fig. 2(c)).

The invertibility of 𝐹 can be represented using the partitioning of the (𝑘1, 𝑘2)-parameter plane by the straight lines of equations
𝑘2 = 𝑘1 + 𝑑∕𝑘, 𝑘2 = −𝑘1 + 𝑑∕𝑘, 𝑘2 = −𝑘1 − 𝑑∕𝑘 and 𝑘2 = 𝑘1 − 𝑑∕𝑘 (related to overlapping critical lines, 𝐶𝐸− = 𝐶𝑀−, 𝐶𝐸− = 𝐶𝑀+,
𝐶𝐸+ = 𝐶𝑀− and 𝐶𝐸+ = 𝐶𝑀+, respectively), as schematically illustrated in Fig. 3 and summarized in

Property 4. Invertibility of map 𝐹 is of

• 𝑍1-𝑍2-𝑍1-𝑍0-𝑍1 type, with 𝑆𝑀 ∩ 𝑆𝐸 = ∅ (as e.g., in Fig. 2(a)) for (𝑘1, 𝑘2) ∈ 𝑅I, or with partially overlapping 𝑆𝑀 and 𝑆𝐸 (as
e.g., in Fig. 2(d)) for (𝑘1, 𝑘2) ∈ 𝑅IV;

• 𝑍1-𝑍0-𝑍1-𝑍0-𝑍1 type, with 𝑆𝑀 ⊂ 𝑆𝐸 (as e.g., in Fig. 2(b)) for (𝑘1, 𝑘2) ∈ 𝑅II;
• 𝑍1-𝑍2-𝑍1-𝑍2-𝑍1 type, with 𝑆𝐸 ⊂ 𝑆𝑀 (as e.g., in Fig. 2(c)) for (𝑘1, 𝑘2) ∈ 𝑅III.

To illustrate Property 4 we present examples of various chaotic attractors of map 𝐹 for (𝑘1, 𝑘2) ∈ 𝑅I in Fig. 4(a), (𝑘1, 𝑘2) ∈ 𝑅II
in Fig. 4(b), (𝑘1, 𝑘2) ∈ 𝑅III in Fig. 4(c), and (𝑘1, 𝑘2) ∈ 𝑅IV in Fig. 4(d). It is quite visible that chaotic attractors have no points in
𝑍0-zones (bounded by 𝐶𝐸+ and 𝐶𝐸− in (a), 𝐶𝐸+ and 𝐶𝑀− as well as 𝐶𝑀+ and 𝐶𝐸− in (b), 𝐶𝑀− and 𝐶𝐸− in (d)).

4. Examples of bifurcation structures in (𝒌𝟏, 𝒌𝟐)- and (𝒃, 𝒌𝟐)-parameter planes

In this section we give several examples of bifurcation structures in the parameter space of map 𝐹 , which are obtained
numerically. In particular, Fig. 5(a) presents periodicity regions associated with attracting 𝑛-cycles, 𝑛 ≤ 36, in the (𝑘1, 𝑘2)-parameter
plane for 𝑏 = 0.8, 𝑑 = 1, 𝑘 = 0.1, and Fig. 5(b) shows the same parameter plane with periodicity regions of 𝑛-cycles having symbolic
sequence7 𝑀𝐸𝑛−1 (this family of cycles is considered in detail in the next section). For 𝑏 = 0.8 as in Fig. 5, the stability range of the
actual and virtual fixed point is −1 < 𝑘1 < 0.9 and −1 < 𝑘2 < 0.9, respectively, so in Fig. 5 the vertical strip bounded by 𝑘1 = −1
and 𝑘1 = 0.9 is related to the attracting fixed point 𝑂 (coexisting with other attractors for −1 < 𝑘2 < 0.9), while the horizontal strip
bounded by 𝑘2 = −1 and 𝑘2 = 0.9 is related to the attracting virtual fixed point 𝑉 , and as a results, in this strip any trajectory is
bounded. One more example is in Fig. 6(a), where the periodicity regions in the (𝑏, 𝑘2)-parameter plane are shown for 𝑘1 = −1.1,
𝑑 = 1, 𝑘 = 0.1, and in Fig. 6(b) in the same parameter plane we present periodicity regions of 𝑛-cycles 𝑀𝐸𝑛−1. For 𝑘1 = −1.1 as
in Fig. 6, the fixed point 𝑂 is repelling, and the virtual fixed point 𝑉 is attracting in the triangle bounded by 𝑘2 = −1, 𝑏 = 1 and
𝑘2 = (1 + 𝑏)∕2.

As one can see, the overall bifurcation structure of map 𝐹 is quite complicated, and it is difficult to reveal all its organizing
principles. However, some regularities can be recognized. For example, Fig. 7(a) shows the 1D bifurcation diagram 𝑥 versus 𝑘1 for
𝑘2 = 0.1, 𝑏 = 0.8, 𝑑 = 1, 𝑘 = 0.1 (the related parameter path is indicated in Fig. 5(a) by the horizontal arrow), where elements similar
to those associated with a period-adding bifurcation structure can be detected, while Fig. 7(b) presents the 1D bifurcation diagram 𝑥
versus 𝑘2 for 𝑘1 = 1 (along the vertical arrow in Fig. 5(a)) with elements of a period-incrementing structure with incrementing step
2. We refer to [3] for the detailed description of both structures which can be observed in the parameter space of a 1D discontinuous
piecewise monotone map. Comparing Fig. 5(a) with Fig. 5(b), we can conclude that cycles 𝑀𝐸𝑛−1 are basic cycles for both these
structures: see, for example, the 9-cycle 𝑀𝐸8 = 𝑀𝑈𝐿7 belonging to the structure shown in Fig. 8(a) (where 𝑘1 = 9.5, 𝑘2 = 0.1),
and coexisting 9-cycle 𝑀𝐸8 = 𝑀(𝑈𝐿)4 and 11-cycle 𝑀𝐸10 = 𝑀(𝑈𝐿)5 belonging to the structure shown in Fig. 8(b) (where 𝑘1 = 1,
𝑘2 = 0.7). A mechanism of creation of these cycles is easy to explain: in both cases, the fixed point 𝑂 is a saddle with one negative

7 An 𝑛-cycle {𝑝𝑖}𝑛−1𝑖=0 of map 𝐹 can be represented by a symbolic sequence 𝜎 = 𝜎0 ...𝜎𝑛−1, where 𝜎𝑖 = 𝑀 if 𝑝𝑖 ∈ 𝐷𝑀 and 𝜎𝑖 = 𝐸 if 𝑝𝑖 ∈ 𝐷𝐸 ; points 𝑝𝑖 ∈ 𝐷𝐸 can
further be distinguished by 𝜎 = 𝐿 if 𝑝 ∈ 𝐷 and 𝜎 = 𝑈 if 𝑝 ∈ 𝐷 .
𝑖 𝑖 𝐿 𝑖 𝑖 𝑈
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Fig. 4. Examples of chaotic attractors of map 𝐹 for (a) (𝑘1 , 𝑘2) ∈ 𝑅I, where 𝑘1 = −6, 𝑘2 = −0.9, 𝑏 = 0.5, 𝑑 = 1, 𝑘 = 0.1; (b) (𝑘1 , 𝑘2) ∈ 𝑅II, where 𝑘1 = −0.45,
𝑘2 = −0.95, 𝑏 = −0.9, 𝑑 = 1, 𝑘 = 3; (c) (𝑘1 , 𝑘2) ∈ 𝑅III, where 𝑘1 = −12, 𝑘2 = 0.65, 𝑏 = 0.5, 𝑑 = 1, 𝑘 = 0.1; (d) (𝑘1 , 𝑘2) ∈ 𝑅IV, where 𝑘1 = −1.5, 𝑘2 = −0.95, 𝑏 = 0.5,
𝑑 = 1, 𝑘 = 0.5.

Fig. 5. (a) Periodicity regions related to attracting 𝑛 -cycles, 𝑛 ≤ 36, in the (𝑘1 , 𝑘2)-parameter plane for 𝑏 = 0.8, 𝑑 = 1, 𝑘 = 0.1. (b) The same parameter plane
with periodicity regions related to attracting cycles 𝑀𝐸𝑛−1. Here, the fixed point 𝑂 is attracting in the vertical strip bounded by 𝑘1 = −1 and 𝑘1 = 0.9, and the
virtual fixed point 𝑉 is attracting in the horizontal strip bounded by 𝑘2 = −1 and 𝑘2 = 0.9.

and one positive eigenvalue, while the virtual fixed point 𝑉 is an attracting node with one negative and one positive eigenvalue, so
that starting from the leftmost periodic point, say, point 𝑝 ∈ 𝐷 , the trajectory approaches 𝑉 jumping from one to the other side
0 𝐸
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Fig. 6. (a) Periodicity regions related to attracting 𝑛-cycles, 𝑛 ≤ 36, in the (𝑏, 𝑘2)-parameter plane for 𝑘1 = −1.1, 𝑑 = 1, 𝑘 = 0.1. (b) Periodicity regions related to
attracting cycles 𝑀𝐸𝑛−1. For the considered parameter values, the fixed point 𝑂 is repelling and the virtual fixed point 𝑉 is attracting in the triangle bounded
by 𝑘2 = −1, 𝑏 = 1, 𝑘2 = (𝑏 + 1)∕2.

Fig. 7. 1D bifurcation diagram (a) 𝑥 versus 𝑘1 and (b) 𝑥 versus 𝑘2 for 𝑏 = 0.8, 𝑑 = 1, 𝑘 = 0.1 and (a) 𝑘2 = 0.1, (b) 𝑘1 = 1. The related parameter paths are
indicated by horizontal and vertical arrows, respectively, in Fig. 5(a). In (b), coexistence is highlighted in red. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

with respect to the eigendirection related to the positive eigenvalue of 𝑉 , until it reaches the middle partition, 𝑝𝑛−1 ∈ 𝐷𝑀 , where
map 𝐹𝑀 acts sending the trajectory back to 𝐷𝐸 ∶ 𝐹𝑀 (𝑝𝑛−1) = 𝑝0 ∈ 𝐷𝐸 .

Before moving on to a deeper study of the cycles 𝑀𝐸𝑛−1, we would like to stress that these multistability scenarios are particularly
relevant for the potentiality of the model to replicate important stylized facts of financial markets. In fact, when two attractors
characterized by quite different periodicities (like a cycle of low period and a cycle of high period or a chaotic attractor) coexist,
the adding of a noise to the system may lead the dynamics of the asset price to periodically switch from a certain kind of fluctuation
to another one, which is at the origin of volatility clustering of returns, fat-tails in their distribution, and so on.

5. 𝒏-cycles 𝑴𝑬𝒏−𝟏, 𝒏 ≥ 𝟑

In this section we demonstrate how some family of cycles of map 𝐹 can be studied, namely, how to get existence and stability
conditions of a cycle belonging to a specific family. As an example, we consider the simplest family of 𝑛-cycles having symbolic
sequence 𝑀𝐸𝑛−1, 𝑛 ≥ 3, where symbol 𝐸 can be substituted by 𝐿 or 𝑈 depending on the location of the related points of the cycle.
An example is the 9-cycle 𝑀𝐸8 = 𝑀𝑈𝐿7 in Fig. 8(a), or the 9- and 11-cycles 𝑀𝐸8 = 𝑀(𝑈𝐿)4 and 𝑀𝐸10 = 𝑀(𝑈𝐿)5, respectively,
in Fig. 8(b).

Let 𝑝0 = (𝑥0, 𝑦0) ∈ 𝐷𝑀 be the point of the cycle 𝑀𝐸𝑛−1. This point satisfies the equation 𝐹 𝑛−1
𝐸 ◦𝐹𝑀 (𝑥0, 𝑦0) = (𝑥0, 𝑦0) which can be

written as

𝐽 𝑛−1(𝐽 (𝑥 , 𝑦 ) − (𝑥∗ , 𝑦∗ )) + (𝑥∗ , 𝑦∗ ) = (𝑥 , 𝑦 )
𝐸 𝑀 0 0 𝐸 𝐸 𝐸 𝐸 0 0
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Fig. 8. (a) An attracting 9-cycle 𝑀𝐸8 = 𝑀𝑈𝐿7. (b) Coexisting 11-cycle 𝑀𝐸10 = 𝑀(𝑈𝐿)5 and 9-cycles 𝑀𝐸8 = 𝑀(𝑈𝐿)4 and their basins. Here 𝑏 = 0.8, 𝑑 = 1,
𝑘 = 0.1 and (a) 𝑘1 = 9.5, 𝑘2 = 0.1, (b) 𝑘1 = 1, 𝑘2 = 0.7. In both cases, the fixed point 𝑂 is a saddle with one negative and one positive eigenvalue.

where to simplify application of 𝐹 𝑛−1
𝐸 to the point (𝑥1, 𝑦1) = 𝐹𝑀 (𝑥0, 𝑦0) = 𝐽𝑀 (𝑥0, 𝑦0) we make a change of variables moving the fixed

point (𝑥∗𝐸 , 𝑦
∗
𝐸 ) of 𝐹𝐸 to the origin and then, after 𝑛 − 1 iterations, we come back to the original variables. From this equation we

obtain

(𝑥0, 𝑦0) = (𝐽 𝑛−1
𝐸 𝐽𝑀 − 𝐼)−1(𝐽 𝑛−1

𝐸 − 𝐼)(𝑥∗𝐸 , 𝑦
∗
𝐸 ) (11)

where det(𝐽 𝑛−1
𝐸 𝐽𝑀 − 𝐼) ≠ 0. The matrix 𝐽 𝑗

𝐸 for any 𝑗 ≥ 2 can be represented as

𝐽 𝑗
𝐸 =

(

𝑎𝑗 𝑘2𝑎𝑗−1
𝑎𝑗−1 𝑘2𝑎𝑗−2

)

where 𝑎𝑗 is a solution of the second-order linear difference equation

𝑎𝑗 = (𝑏 − 𝑘2)𝑎𝑗−1 + 𝑘2𝑎𝑗−2, 𝑎0 = 1, 𝑎1 = 𝑏 − 𝑘2 (12)

From (11) we obtain

𝑥0 =
𝑑

1−𝑏 − 𝑑
𝑃𝑀𝐸𝑛−1 (1)

𝑎𝑛−1

𝑦0 =
𝑑

1−𝑏 − 𝑑
𝑃𝑀𝐸𝑛−1 (1)

(𝑎𝑛−2 + (−𝑘2)𝑛−1)
(13)

where 𝑃𝑀𝐸𝑛−1 (𝜆) is the characteristic polynomial of the matrix 𝐽 𝑛−1
𝐸 𝐽𝑀 :

𝑃𝑀𝐸𝑛−1 (𝜆) = 𝜆2 − (𝑎𝑛−1(𝑏 − 𝑘1) + 𝑎𝑛−2(𝑘1 + 𝑘2))𝜆 − 𝑘1(−𝑘2)𝑛−1 (14)

and it has to be 𝑃𝑀𝐸𝑛−1 (1) ≠ 0, or, equivalently, det(𝐽 𝑛−1
𝐸 𝐽𝑀 − 𝐼) ≠ 0.

It is clear that the cycle 𝑀𝐸𝑛−1 exists only if each point of the cycle is located in its proper partition, that is, if 𝑝0 ∈ 𝐷𝑀 and
𝑝𝑖 ∈ 𝐷𝐸 for 1 ≤ 𝑖 ≤ 𝑛 − 1. The existence condition 𝑝0 ∈ 𝐷𝑀 leads to two inequalities, 𝑦0 > 𝑥0 − 𝑘 and 𝑦0 < 𝑥0 + 𝑘, which must
be satisfied simultaneously. If 𝑦0 = 𝑥0 − 𝑘 or 𝑦0 = 𝑥0 + 𝑘, a BCB of 𝑀𝐸𝑛−1 occurs: 𝑝0 collides with the border 𝐶−

−1 of 𝐷𝑀 , or with
the border 𝐶+

−1. Substituting 𝑥0 and 𝑦0 from (13) to 𝑦0 = 𝑥0 − 𝑘 and 𝑦0 = 𝑥0 + 𝑘, the related BCB curves denoted 𝐵𝐶−
0,𝑛 and 𝐵𝐶+

0,𝑛,
respectively, are obtained:

𝐵𝐶−
0,𝑛 ∶ 𝑎𝑛−1 − 𝑎𝑛−2 − (−𝑘2)𝑛−1 = − 𝑘

𝑑 𝑃𝑀𝐸𝑛−1 (1)
𝐵𝐶+

0,𝑛 ∶ 𝑎𝑛−1 − 𝑎𝑛−2 − (−𝑘2)𝑛−1 =
𝑘
𝑑 𝑃𝑀𝐸𝑛−1 (1)

These equations can explicitly be solved with respect to 𝑘1:

𝐵𝐶−
0,𝑛 ∶ 𝑘1 =

1−𝑎𝑛−1𝑏−𝑎𝑛−2𝑘2
𝑎𝑛−2−𝑎𝑛−1+(−𝑘2)𝑛−1

− 𝑑
𝑘

𝐵𝐶+
0,𝑛 ∶ 𝑘1 =

1−𝑎𝑛−1𝑏−𝑎𝑛−2𝑘2
𝑎𝑛−2−𝑎𝑛−1+(−𝑘2)𝑛−1

+ 𝑑
𝑘

Note immediately that considering some specific parameter plane, it may happen that one of these BCBs, or even both cannot occur,
and thus, the related set is not involved as a boundary of the corresponding periodicity region in that plane. Moreover, only a part
of each curve corresponds to a BCB of an actual cycle, namely, when all the other existence conditions are also satisfied.
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The other BCB curves associated with the cycle 𝑀𝐸𝑛−1 can be obtained in a similar way. In particular, applying map 𝐹𝑀 to the
oint (𝑥0, 𝑦0) (see (13)) we obtain the point 𝑝1 = (𝑥1, 𝑦1), where

𝑥1 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
(1 − 𝑘2𝑎𝑛−2)

𝑦1 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
𝑎𝑛−1

t has to be 𝑦1 < 𝑥1 − 𝑘 or 𝑦1 > 𝑥1 + 𝑘, and from 𝑦1 = 𝑥1 ∓ 𝑘, we obtain the curves 𝐵𝐶−
1,𝑛 and 𝐵𝐶+

1.𝑛, respectively:

𝐵𝐶−
1,𝑛 ∶ 1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2 = − 𝑘

𝑑 𝑃𝑀𝐸𝑛−1 (1)

𝐵𝐶+
1,𝑛 ∶ 1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2 =

𝑘
𝑑 𝑃𝑀𝐸𝑛−1 (1)

hen, applying to the point 𝑝1 map 𝐹 𝑖−1
𝐸 for 𝑖 = 2,… , 𝑛−1, we have that all the other points of the cycle 𝑀𝐸𝑛−1, namely, the points

𝑖 = (𝑥𝑖, 𝑦𝑖), are as follows:

𝑥𝑖 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
(𝑎𝑖−1(1 − 𝑘2𝑎𝑛−2) + 𝑘2𝑎𝑖−2𝑎𝑛−1)

𝑦𝑖 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
(𝑎𝑖−2(1 − 𝑎𝑛) + 𝑎𝑖−1𝑎𝑛−1)

(15)

(it is easy to check that for 𝑖 = 𝑛 we get (𝑥𝑛, 𝑦𝑛) = (𝑥0, 𝑦0)), and from 𝑦𝑖 = 𝑥𝑖 ∓ 𝑘, the related BCB curves are

𝐵𝐶−
𝑖,𝑛 ∶ 𝑎𝑖−1(1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2) − 𝑎𝑖−2(1 − 𝑎𝑛 − 𝑘2𝑎𝑛−1) = − 𝑘

𝑑 𝑃𝑀𝐸𝑛−1 (1)

𝐵𝐶+
𝑖,𝑛 ∶ 𝑎𝑖−1(1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2) − 𝑎𝑖−2(1 − 𝑎𝑛 − 𝑘2𝑎𝑛−1) =

𝑘
𝑑 𝑃𝑀𝐸𝑛−1 (1)

(in fact, the above equations are valid also for 𝑖 = 1 taking into account that 𝑎−1 = 0). In particular, substituting 𝑖 = 𝑛 − 1 to (15)
we have that the point 𝑝𝑛−1 = (𝑥𝑛−1, 𝑦𝑛−1) is defined as

𝑥𝑛−1 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
(𝑎𝑛−2 + (−𝑘2)𝑛−1)

𝑦𝑛−1 =
𝑑

(1−𝑏) −
𝑑

𝑃𝑀𝐸𝑛−1 (1)
(𝑎𝑛−3 + (−𝑘2)𝑛−2(𝑏 − 𝑘2))

and from 𝑦𝑛−1 = 𝑥𝑛−1 ∓ 𝑘, the related BCB curves are obtained:

𝐵𝐶−
𝑛−1,𝑛 ∶ 𝑎𝑛−2 − 𝑎𝑛−3 − 𝑏(−𝑘2)𝑛−2 = − 𝑘

𝑑 𝑃𝑀𝐸𝑛−1 (1)

𝐵𝐶+
𝑛−1,𝑛 ∶ 𝑎𝑛−2 − 𝑎𝑛−3 − 𝑏(−𝑘2)𝑛−2 =

𝑘
𝑑 𝑃𝑀𝐸𝑛−1 (1)

Since we consider periodicity regions related to attracting cycles, these regions can be bounded, besides the BCB curves, by the
urves associated with the loss of stability of the cycles. For the cycle 𝑀𝐸𝑛−1, let us suppose that it has no points belonging to the
iscontinuity lines (i.e., 𝑀𝐸𝑛−1 does not undergo a BCB) and thus its eigenvalues, say 𝜆1,𝑛 and 𝜆2,𝑛, are well defined. The stability

conditions for 𝑀𝐸𝑛−1 are {𝑃𝑀𝐸𝑛−1 (1) > 0, 𝑃𝑀𝐸𝑛−1 (−1) > 0, det 𝐽 𝑛−1
𝐸 𝐽𝑀 < 1}, where 𝑃𝑀𝐸𝑛−1 (𝜆) is defined in (14). Given that both

aps, 𝐹𝑀 and 𝐹𝐸 , are linear, an attracting cycle 𝑀𝐸𝑛−1 can lose stability only via degenerate bifurcations: the conditions 𝜆1,𝑛 = 1
and 𝜆2,𝑛 = −1 are associated with degenerate transcritical and degenerate flip bifurcations, respectively, and complex-conjugate
igenvalues on the unit circle are related to a center bifurcation. The corresponding bifurcation curves denoted 𝑃 1

𝑛 , 𝑃−1
𝑛 and 𝐶𝑛,

espectively, can be obtained from 𝑃𝑀𝐸𝑛−1 (1) = 0, 𝑃𝑀𝐸𝑛−1 (−1) = 0 and det 𝐽 𝑛−1
𝐸 𝐽𝑀 = 1:

𝑃 1
𝑛 ∶ 1 − 𝑎𝑛−1(𝑏 − 𝑘1) − 𝑎𝑛−2(𝑘1 + 𝑘2) − 𝑘1(−𝑘2)𝑛−1 = 0

𝑃−1
𝑛 ∶ 1 + 𝑎𝑛−1(𝑏 − 𝑘1) + 𝑎𝑛−2(𝑘1 + 𝑘2) − 𝑘1(−𝑘2)𝑛−1 = 0

𝐶𝑛 ∶ −𝑘1(−𝑘2)𝑛−1 = 1

Clearly, these curves are only valid for an actual cycle for which all the existence conditions are satisfied.
Note that all the equations of the BCB and stability curves obtained above can be solved with respect to 𝑘1.
To summarize, we can state the following

Proposition. Map 𝐹 in (8) has an attracting 𝑛-cycle 𝑀𝐸𝑛−1, 𝑛 ≥ 3, if the following inequalities are satisfied:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑀𝐸𝑛−1 (1) > 0, 𝑃𝑀𝐸𝑛−1 (−1) > 0, −𝑘1(−𝑘2)𝑛−1 < 1,
−𝑘𝑃𝑀𝐸𝑛−1 (1)∕𝑑 < 𝑎𝑛−1 − 𝑎𝑛−2 − (−𝑘2)𝑛−1 < 𝑘𝑃𝑀𝐸𝑛−1 (1)∕𝑑,
and for 𝑖 = 1,… , 𝑛 − 1,
𝑎𝑖−1(1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2) − 𝑎𝑖−2(1 − 𝑎𝑛 − 𝑘2𝑎𝑛−1) < −𝑘𝑃𝑀𝐸𝑛−1 (1)∕𝑑 or
𝑎𝑖−1(1 − 𝑎𝑛−1 − 𝑘2𝑎𝑛−2) − 𝑎𝑖−2(1 − 𝑎𝑛 − 𝑘2𝑎𝑛−1) > 𝑘𝑃𝑀𝐸𝑛−1 (1)∕𝑑

where 𝑎𝑗 is a solution of the second-order linear difference equation given in (12), and 𝑃𝑀𝐸𝑛−1 (𝜆) is defined in (14).

As an example, in Fig. 9(a) we show the periodicity region associated with the attracting cycle 𝑀𝐸2, whose boundaries are
plotted using the equations given above, in the (𝑘1, 𝑘2)-parameter plane for the other parameter values as in Fig. 5(a). As one can
see, in Fig. 9(a) the 3-periodicity region is bounded by proper arcs of the BCB curves 𝐵𝐶+

0,3, 𝐵𝐶
−
0,3, 𝐵𝐶

−
2,3, and the stability curves

−1 2 2
𝑃3 (related to a degenerate flip bifurcation of the cycle 𝑀𝐸 ) and 𝐶3 (related to a center bifurcation of 𝑀𝐸 ), while in Fig. 9(b),
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Fig. 9. Boundaries of the 3-periodicity region (shown in light blue) related to an attracting cycle 𝑀𝐸2 in the (𝑘1 , 𝑘2)-parameter plane for 𝑏 = 0.8, 𝑑 = 1 and
(a) 𝑘 = 0.1, (b) 𝑘 = 0.5. Codimension-two bifurcation points of the cycle 𝑀𝐸2 are marked by black circles. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. (a) Cyclic 𝐹 3-invariant regions (shown in gray with white preimages) bounded by ellipses with centers at points of the cycle 𝑀𝐸2 undergoing a center
bifurcation, and coexisting attracting 14- and 29-period cycles (with blue and yellow basins). (b) Chaotic attractor of map 𝐹 . Here 𝑏 = 0.8, 𝑑 = 1, 𝑘 = 0.1 and
(a) 𝑘1 = −6.15, 𝑘2 =

√

−1∕𝑘1, (b) 𝑘1 = −12, 𝑘2 = 0.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where 𝑘 = 0.5 (and all the other parameter values are as before), also an arc of the BCB curve 𝐵𝐶+
1,3 bounds the 3-periodicity region.

Note that in Fig. 9 all the BCB and stability curves associated with cycle 𝑀𝐸2 are plotted to also show those curves which, in the
considered case, are not involved as the boundaries of the 3-periodicity region in the (𝑘1, 𝑘2)-parameter plane (e.g., the curves 𝐵𝐶−

1,3
and 𝐵𝐶+

2,3).
The center bifurcation of 3-cycle 𝑀𝐸2 is illustrated in Fig. 10(a), where 𝑘1 = −6.15, 𝑘2 =

√

−1∕𝑘1 and other parameters are as
in Fig. 5. In this case, three cyclic 𝐹 3-invariant regions (filled by quasiperiodic trajectories and bounded by ellipses with centers at
the points of the cycle 𝑀𝐸2) coexist with attracting 14- and 29-cycles. An example of a chaotic attractor which can appear after a
center bifurcation, is shown in Fig. 10(b) where the former 𝐹 3-invariant regions (having higher density) are still visible.

Let us apply now the results presented in this section to the family of cycles 𝑀𝐸𝑛−1, 𝑛 ≥ 3. Considering again the periodicity
regions shown in Fig. 5(b) and Fig. 6(b) which are obtained numerically, we now plot their boundaries using the analytical
expressions of these boundaries taking into account all the existence and stability conditions of the related cycles: to compare, in
Fig. 11(a) and Fig. 11(b) these boundaries are superimposed on the periodicity regions shown in Fig. 5(b) and Fig. 6(b), respectively.

To give more details, in Fig. 12(a) the BCB and stability boundaries of the periodicity regions associated with attracting cycles
𝑀𝐸𝑛−1, 𝑛 = 3,… , 36, are plotted in different colors in the (𝑘1, 𝑘2) -parameter plane for the other parameter values fixed as in
Fig. 5. It is interesting to see two partially overlapping substructures which are better visible in Fig. 12(b) presenting magnified
window indicated in Fig. 12(a) by black rectangle. One can check that one substructure (with lower and upper boundaries defined
by decreasing functions) is related to even-period cycles, while the second substructure (with lower and upper boundaries defined
by increasing functions) is related to odd-period cycles (the 1D bifurcation diagram in Fig. 7(b) is a cross-section of this substructure
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Fig. 11. BCB and stability boundaries of the periodicity regions related to the attracting cycles 𝑀𝐸𝑛−1, 𝑛 = 3,… , 36, plotted (in black) using their analytical
expressions, which are superimposed on the periodicity regions obtained numerically: (a) to compare with Fig. 5(b), and (b) to compare with Fig. 6(b).

Fig. 12. (a) BCB and stability boundaries of the periodicity regions related to attracting cycles 𝑀𝐸𝑛−1, 𝑛 = 3,… , 36, in the (𝑘1 , 𝑘2)-parameter plane for 𝑏 = 0.8,
𝑑 = 1, 𝑘 = 0.1. (b) Magnification of the black rectangle indicated in (a). Overlapping parts of the periodicity regions correspond to multistability.

for lower values of 𝑘2, namely, for 0.35 < 𝑘2 < 0.8, 𝑘1 = 1, see the vertical arrow in Fig. 5(a)). The same two substructures in the
(𝑏, 𝑘2)-parameter plane can be seen in the inset in Fig. 13(a) which shows magnified window indicated by the black rectangle. In
Fig. 13, the BCB and stability boundaries of the periodicity regions related to the cycles 𝑀𝐸𝑛−1, 𝑛 = 3,… , 36, are plotted in the
(𝑏, 𝑘2)-parameter plane for the other parameter values fixed as in Fig. 6. Fig. 13(b) shows magnified window indicated in Fig. 13(a)
by red rectangle, where one can better see some substructures ‘‘issuing’’ from the points (𝑏, 𝑘2) = (𝑏𝑚∕𝑛,−1), 𝑏𝑚∕𝑛 = 2 cos(2𝜋𝑚∕𝑛) − 1,
associated with det 𝐽𝐸 = 1 and rational rotation numbers 𝑚∕𝑛 of the matrix 𝐽𝐸 , e.g., from the points (𝑏, 𝑘2) = (𝑏1∕3,−1) = (−2,−1),
(𝑏, 𝑘2) = (𝑏1∕4,−1) = (−1,−1), (𝑏, 𝑘2) = (𝑏1∕5,−1) = ((

√

5−3)∕2,−1), etc. The inset in Fig. 13(b) shows magnified substructure ‘‘issuing’’
from the point (𝑏, 𝑘2) = (−1,−1) associated with rotation number 1∕4. More detailed investigation of these and other substructures
is left for future studies.

6. Conclusions

The presence of periodic and chaotic dynamics, together with the scenarios of multistability are of extreme relevance for the
possibility of replicating important stylized facts of financial markets. Chaotic motion causes the unpredictability typical of asset
prices and the alternation of bubbles and crashes. Even more interestingly can be the scenarios where different attractors coexist. In
particular, when an attractor characterized by low variability of the dynamics (periodic of low period, or even a stable equilibrium)
coexists with another stable attractor causing price fluctuations of large amplitude (periodic of high period or chaotic attractor),
this can be the perfect basis to replicate some other stylized facts of financial markets, such as volatility clustering, simply by
introducing some stochastic element into the model. In our future works we plan to deepen the consequences for the financial
market of the results obtained in the present paper. We would like, not only to introduce some noise into the picture, but also to
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Fig. 13. (a) BCB and stability boundaries of the periodicity regions related to attracting cycles 𝑀𝐸𝑛−1, 𝑛 = 3,… , 36, in the (𝑏, 𝑘2)-parameter plane for 𝑘1 = −1.1,
𝑑 = 1, 𝑘 = 0.1. The inset shows the magnified black rectangle. (b) Magnification of the red rectangle indicated in (a); the inset shows the magnified blue
rectangle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

consider other kinds of traders, the possibility for traders to switch from one strategy to another one, and more price trend thresholds
(i.e. more regimes). From a dynamical point of view, specific properties of the two-dimensional piecewise-linear discontinuous map
described in the present paper lead to quite complex bifurcation structure of the parameter space. We obtained the boundaries of the
periodicity regions associated with attracting cycles having one point in the middle partition and all other points outside it. These
cycles are basic to structures with some elements of period-adding and period-incrementing bifurcation structures (well described
for one-dimensional discontinuous piecewise monotone maps), which are worth describing in more detail, as well as bifurcation
structures related to other cycles and chaotic attractors.
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