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Abstract
The paper examines how auditing and punishment can be employed to manage a com-
mon property resource, specifically a fishery, through a regulation scheme that involves 
pre-assigned multi-annual quotas. The decision to adhere to or exceed the assigned fish-
ing quota is modeled as a two-player game. In the absence of auditing, the model yields 
noncompliance with the quota, known as the tragedy of the commons, which is the only 
Nash equilibrium of the game. With the introduction of formal enforcement, which offsets 
the additional profit from noncompliance, and extensive auditing through an integrated 
data control system, adherence to the quota becomes the only Nash equilibrium of the 
model. A dynamic version of this game, with logistic biomass growth and quadratic costs 
of harvesting, confirms that a digitized and integrated fishery control system may enhance 
sustainability. However, the study also highlights the potential risks associated with fishing 
quotas and enforcement that are not properly adjusted for the resource and are not updated 
as frequently as necessary.

Keywords Fishery · Managing quota · IT control systems · Enforcing

1 Introduction

The effective management of renewable resources, such as fisheries, poses a significant 
challenge for humanity. This challenge is particularly pronounced with common property 
resources (CPRs), which can be used by multiple agents and are therefore characterized 
by externalities in their use. CPRs require appropriate regulatory measures and formal 
enforcement to ensure sustainability over time and to prevent overexploitation, see Ostrom 
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(1990). In the case of fisheries, the exploitation of resources involves complex interactions 
between biological and social systems. The involvement of diverse stakeholders with dif-
fering objectives on highly exploited resources further complicates the issues. According to 
OECD (2022), fish consumption is expected to increase at a faster rate than meat over the 
next decade. An effective management approach necessitates precise information on the 
status of the resources and the alignment of theoretical biological models of resource growth 
with accurate data on biomass status. To address the challenges of overfishing, which are 
often exacerbated by overcapacity, illegal fishing, and inadequate management, the Euro-
pean Union (hereafter, EU) has implemented comprehensive management and monitoring 
activities targeting individual fish species. The European Common Fisheries Policy (here-
after, CFP) encompasses regulations aimed at conserving marine resources and managing 
European fisheries both within and outside EU waters.

In particular, ”Fisheries management under the CFP is based on the need to ensure 
environmentally sustainable exploitation of marine biological resources and the long-term 
viability of the sector. To achieve this objective, the EU has adopted legislation on access to 
EU waters, the allocation and use of resources, total allowable catches, fishing effort limita-
tion and technical measures.”1

The activities carried out under the CFP involve using mathematical models to estimate 
the growth of fish stocks, assessing the current stocks of individual fish species, and setting 
quotas for the Total Allowable Catch (hereafter, TAC) per species to ensure the highest sus-
tainable annual harvest, known as the Maximum Sustainable Yield (hereafter, MSY) for all 
European fisheries, see Kanik and Kucuksenel (2016). Fishing quotas are assigned to differ-
ent countries by considering the interests of both fishers and consumers while also aiming 
to bring the fish stocks toward MSY.2

To support regulatory efforts, national and international Monitoring, Control, and Sur-
veillance (hereafter, MCS) programs have been established to oversee actual fishing activi-
ties and penalize overfishing. A fisheries certification program, known as CATCH, has been 
implemented across the sector to complement these regulatory activities. CATCH is an 
advanced IT tool designed to streamline assessments and verification of catch certificates 
for fishery products in the EU market.3 In essence, all fish products entering the EU market 
must be accompanied by an Electronic Catch Certificate containing details about the catch, 
its origin, and the fishing vessel. CATCH facilitates a fully digital and paperless workflow, 
thereby improving traceability and preventing the import of fishery products obtained from 
Illegal, Unreported, and Unregulated (hereafter, IUU) fishing into the EU market. It is worth 
noting that globally, IUU fishing has a value exceeding €23 billion annually and poses 
significant ecological and reproductive risks to marine species, see Obaidullah (2023). 

1  h t t p s :  / / w w w  . e u r o p  a r l .  e u r o p  a . e u /  e r p l - a  p p - p  u b l i c  / f a c t  s h e e t s  / p d f  / e n / F T U _ 3 . 3 . 2 . p d f.
2 In 2002, the EU, among several countries, agreed to comply with the Plan of Implementation of the Johan-
nesburg World Summit on Sustainable Development United Nations (2002), committing to maintain or 
restore fish stocks to levels that can produce the MSY. Elleby et al. (2025) estimate the additional global 
fish production that could be obtained with MSY management of overfished species, while recognizing the 
limitations associated with MSY. See also on this point Sustainability in action (2020).

3 Hereafter, by CATCH we refer to the digital information management system for the Catch Certification 
Scheme that shall be established by the Commission in accordance with Articles 12b, 12c and 12d of 
Regulation (EU) 2023/2842 of the European Parliament and of the Council of 22 November 2023 amend-
ing Council Regulation (EC) No 1224/2009, and amending Council Regulations (EC) No 1967/2006 and 
(EC) No 1005/2008 and Regulations (EU) 2016/1139, (EU) 2017/2403 and (EU) 2019/473 of the European 
Parliament and of the Council as regards fisheries control ( h t t p s :  / / e u r  - l e x . e  u r o p  a . e u /  e l i / r  e g / 2 0 2  3 / 2 8  4 2 / o j ).
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According to estimates (Agnew et al. 2009), IUU fishing accounts for approximately 20% 
of reported catches worldwide, with notable variations across regions and types of catches.

To prevent illegal fishing activities, many governments and supranational institutions are 
taking steps to adopt mechanisms that discourage illegal actions. In the EU, the CATCH sys-
tem integrates Vessel Monitoring Systems (hereafter, VMSs) data to reduce the likelihood 
of misconduct. A VMS allows environmental and fisheries regulatory organizations to track 
and monitor fishing vessels’ activities when a vessel’s location or conduct indicates IUU 
fishing. VMSs can be used to monitor vessels in territorial waters or Exclusive Economic 
Zones (EEZs) (which extend 200 nautical miles from coasts) and applies to various vessel 
categories, including local fish such as anchovies and scallops, highly migratory species 
like tuna, and others. VMSs utilize various communication technologies, such as Automatic 
Identification Systems (AISs) and satellite links, to transmit catch data. Starting from Janu-
ary 2026, CATCH will be mandatory for both operators and EU authorities for the import of 
fishery products. This requirement comes after the recent revision of the Regulation against 
IUU Fishing.4 The EU’s regulatory approach is similar to that of other government agencies. 
For instance, the New Zealand Ministry of Fisheries establishes an annual TAC for each fish 
stock to maintain the population at a level that allows for MSY. Similar to this, compliance 
and enforcement measures involve a series of reporting procedures to track fish from fishing 
vessels to authorized land receivers. Additionally, an at-sea surveillance program is in place, 
which includes observers on board fishing vessels, see Newell et al. (2005).

Despite the formal commitments made by countries to address the issue of overexploi-
tation of fish stocks, such as the Pledge for nature to reverse biodiversity loss,5 signed by 
the EU and 88 countries, it is clear that the outcome referred to as Hardin’s tragedy of the 
commons still prevails. This result was anticipated by Hardin in Hardin (1968), based on 
the game theory approach to the problem of shared resources. Worm et al. (2009) estimated 
that in the EU, 88% of assessed stocks are being fished beyond their MSY, with 30% of 
these stocks being outside safe biological limits, see for more information Commission of 
the European Communities (2009). Pauly and Zeller (2016) show that official data under-
estimate total withdrawals and stress the importance of control systems on the entire fisher-
ies, including small-scale ones. The tragedy of the commons occurs whenever agreements 
among exploiters to reduce overfishing are not binding and non-compliant behaviors are not 
adequately monitored and sanctioned. We refer to Jensen et al. (2017) for a review of the 
literature on compliance in fisheries models.

In this paper, we present a model of resource exploitation, where a regulator has control 
and enforcement powers. In a simplified scenario, we consider only two exploiters of the 
resource who are short-sighted (myopic) and risk-neutral maximizers. The regulator sets 
optimal fishing quotas and can choose the level of enforcement and penalties for those who 
exceed the quotas. We first analyze the short-term harvesting game with quotas for different 
profit functions, in cases with no punishment (the tragedy of the commons or fisherman’s 
dilemma) and with enforcement and penalties. We then establish thresholds for penalties 
that ensure agent compliance when exploitation and overfishing activities are adequately 
monitored, which nowadays seems possible with integrated data systems such as CATCH 
as described earlier.

4  h t t p s :  / / e u r  - l e x . e  u r o p  a . e u /  l e g a l  - c o n t e  n t / E  N / T X T  / ? u r i  = C E L E X  : 3 2 0  0 8 R 1 0 0 5.
5 See  h t t p s :  / / w w w  . c b d . i  n t / a  r t i c l  e / l e a  d e r s - p  l e d g  e - f o r - n a t u r e.
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Next, we extend our analysis to the long-term dynamics of the game where the actions 
of the agents and the regulator affect the resource, assuming logistic growth. Exploiters 
can choose to adhere to the quota without risk of penalty or exceed it for short-term gain. 
We examine scenarios where the resource is not fished, partial MSY exploitation occurs, 
and where agents behave like Cournot-Nash-style exploiters. We recall that the equilibrium 
with constant MSY harvesting does not guarantee resource sustainability, as it can result 
in resource depletion or extinction because it is semi-stable by construction, see, e.g., Kar 
and Legovic (2014) and Mesnil (2014) for a critical review on MSY. Under Cournot-Nash 
harvesting, even more resource depletion or extinction can occur compared to harvesting 
under the MSY target.

We then tackle a dynamic version of the harvesting game in the case of full compliance, 
where significant penalties are enforced by the regulator. Mathematically, the dynamics is 
modeled through a one-dimensional piecewise-smooth map. This is because there is a bio-
mass threshold below which agents will exploit the stock less than imposed by the quota, 
due to economic profitability considerations (Cournot-Nash harvesting).6 We fully charac-
terize the system dynamics under full compliance when the quota set by the regulator is at 
MSY, and also provide a robustness analysis for quotas below MSY in Appendix A.

Here we retrieve that, in line with the literature, implementing a quota system with a total 
catch at MSY, even with full compliance, does not prevent the risk of the resource becom-
ing extinct in finite time. As recalled before, this is because the equilibrium with MSY 
harvesting is semi-stable. Unfortunately, the same risk may persist even if agents exploit the 
resource less than the target requires and choose a Cournot-Nash catch to maximize their 
profit.

In the final part of the paper, we focus on a comprehensive case where the regulator 
establishes quotas and enforces penalties for non-compliance. Agents face the decision of 
adhering to the quota or exceeding it if it leads to greater profitability. Failure to adhere to 
the quota may result from low biomass, making it unprofitable to harvest while sticking to 
the quota because of high costs, or from high biomass where the benefits of exceeding the 
quota outweigh the penalties. This last occurrence illustrates a significant risk associated 
with fines for quota overfishing: if the penalties are not appropriately set, we may observe 
fluctuations in stock levels followed by overfishing due to low harvesting costs, leading to 
drastic declines in the resource stock.

We provide a detailed analysis of the dynamic model under enforcement and non-
compliance by examining a growth map with both a kink point and a discontinuity point. 
Through map analysis, we can not only analytically determine the local stability properties 
of the equilibria, but also identify the initial conditions that lead to convergence to different 
equilibrium states (i.e., the basins of attraction of attractors). Additionally, we detect more 
complex dynamics, such as periodic or chaotic behavior. The information on the basins 
of attraction is particularly important in the context presented, as the size of these basins 
of attraction serves as a measure of the system’s resilience to perturbations in the stock 
resource. Appropriate staircase diagrams are presented to illustrate the system’s dynam-
ics from suitable initial conditions. Bifurcation diagrams show how asymptotic (long-run) 

6 A piecewise-smooth map is a map where the phase space is partitioned into at least two open regions with 
different smooth functions applying in each region. A piecewise-smooth map may be discontinuous across 
boundaries, or it may be continuous but not differentiable. See, e.g., Glendinning and Jeffrey (2019) and 
Avrutin et al. (2019).
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dynamics and basins of attraction change as the parameter of the natural growth rate of the 
fish increases. The comparison of these diagrams allows us to provide a global analysis 
of the impact of the different harvesting schemes in terms of overexploitation and risk of 
extinction.

The road map of the paper is as follows. Section 2 introduces a general harvesting model 
under a fishing quota system with auditing and punishment. Section 3 considers the short-
run version of the harvesting game and highlights the benefits of an extensive auditing 
system. Section 4 presents a specific long-run version of the harvesting game, emphasizing 
the risks of a fishing quota system despite extensive auditing that ensures punishment for 
non-compliance. Section 5 concludes. Appendix A contains the investigation of the resource 
growth model under a fishing quota system with full compliance and quota set at a fraction 
of the MSY. All the proofs are in Appendix B. Appendix C contains the derivation of the 
harvesting function under a fishing quota system with partial compliance.

2 The Harvesting Game with Quotas

Let us consider a setup where two identical players harvest a renewable resource (fishery) 
and sell it in a duopoly market. The fishery is regulated by an authority that sets the TAC and 
allocates this to the two agents through periodic quotas that each harvester can land over a 
finite time horizon.7 For the period of allocation of fishing quotas and for whatever level of 
biomass X, the players have to decide if they want to comply with the quotas or not. Except 
for that, players are involved in a Cournot duopoly game and are assumed to be Cournot-
Nash players in that, given a biomass level, they harvest the quantity consistent with the 
Cournot-Nash equilibrium.8

Time is measured in discrete periods of allocation of fishing quotas, typically one year. 
Let Xt be the level of biomass at time t and let us denote by qCN (Xt) the quantity harvested 
by a Cournot-Nash player. If a player adheres to the quota regulation, her harvesting is 
qQ (Xt) = min

{
Q (Xt) , qCN (Xt)

}
, where Q (Xt) is the quota imposed by the regula-

tor to an individual player.9 In the following, we denote by qi (Xt) the level of harvesting 
of fisher i, with i = 1, 2, by q−i (Xt) the level of harvesting of fisher i’s opponent, and by 
H (Xt) = q1 (Xt) + q2 (Xt) the level of total harvesting.

Let us assume that a fishery control system is implemented, where the frequency of con-
trols depends on the level of harvesting.10 We assume that the number of controls follows a 
Poisson process Nt with an enforcement intensity (arrival rate) λ (H (Xt)), which increases 

7 This modeling assumption is inspired by the current EU legislation, see, e.g.,  h t t p s :  / / w w w  . e u r o p  a r l .  e u r o p  a . 
e u /  e r p l - a  p p - p  u b l i c  / f a c t  s h e e t s  / p d f  / e n / F T U _ 3 . 3 . 2 . p d f.

8 Aiming to provide a simplified representation of European fisheries, the players can be considered as two 
European countries, whose fishers harvest from the same CPR. Hence, we neglect the issue of Individual 
Transferable Quotas (hereafter, ITQs) assuming that there is already an optimal allocation of quotas within 
each country. For compliance issues arising in fishery regulated with ITQs, we refer the reader to Copes 
(1986) and Chavez and Salgado (2005).

9 We assume the players to be identical so that the quota is the same for the two players. Generalization with 
asymmetric players could follow a similar approach. Additionally, we consider a general setup where the 
quota is set based on the biomass level. In Sect. 4, we consider the common real case of a constant quota.

10 See for instance  h t t p s :  / / w w w  . e u r o p  a r l .  e u r o p  a . e u /  e r p l - a  p p - p  u b l i c  / f a c t  s h e e t s  / p d f  / e n / F T U _ 3 . 3 . 3 . p d f
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with the total harvesting.11 Without loss of generality, we set λ̄ = 1, which is the maximum 
enforcement rate. Controls are not operated when λ (H (Xt)) = 0 for all H (Xt) , while 
λ (H (Xt)) = λ̄, for all H (Xt), represents the intensity of controls when the system is 
active. This control system, referred to as CATCH, operates similarly to the CATCH sys-
tem12 recently imposed by the EU on the fishing vessels to control harvesting activity in 
real-time using electronic devices connected to the internet.13 Any less efficient control sys-
tem than the CATCH technology is represented by λ (H (Xt)) being an increasing function 
of H (Xt) with λ (0) = 0 and λ (H (Xt)) → λ̄ as H (Xt) → +∞.14

Based on the assumptions, the probability of a number k of controls during a specific unit 
of time (t, t + 1] is given by 

 
P (Nt+1 − Nt = k) = [λ (H (Xt))]k e−λ(H(Xt))

k!
 (2)

where k = 0, 1, 2, . . .. Additionally, agents are risk-neutral, as is standard in the economic 
literature on law enforcement in fisheries, as seen in references such as Suitinen and Ander-
sen (1985) and Nostbakken (2013). Consequently, the expected profit for fisher i in the next 
unit of time (t, t + 1] can be expressed as 

 πe
i,t+1 (qi (Xt) , q−i (Xt) ; Xt) = πi,t+1 (qi (Xt) , q−i (Xt) ; Xt) − F (qi (Xt) ; Xt)E [Nt+1 − Nt| H (Xt)] (3)

where πi,t+1 is the (certain) profit function in case of no controls and F (qi (Xt) ; Xt) is the 
penalty function. We will assume a constant fine, leading to the penalty function taking the 
form:15 

 
F (qi (Xt) ; Xt) =

{
µ if qi (Xt) > qQ (Xt)

0 otherwise
 (4)

11 This assumption is based on the principle that increased harvesting leads to reduced biomass, which in turn 
requires regulation by a public authority. Additionally, higher harvesting activity increases the likelihood of 
being inspected if regulation is in place.
12 See  h t t p s :   /  / o c e a n  s - a n  d - fi   s h e r  i  e s .   e c . e u r   o p a   . e u /   n e w  s /  e u - fi  s  h  e r  i e s - c  o  n t r o  l -  s y s  t e  m -  g e t  s - m a j o r  - r e v  a m p  - 2  0 2 4 - 
0 1 - 0 9 _ e n.
13 With the CATCH system, it is possible to control any single harvesting activity; therefore, the probability 
of control is independent of the level of harvesting. Excluding technical issues that make the CATCH system 
temporarily unavailable, we set λ̄ = 1 in the following.
14 A possible analytical expression for the enforcement intensity is:

 
λ (H (X)) = λ̄

H (X)
1 + H (X)  (54)

with λ̄ = 1.
15 Focusing on informal enforcement, Nostbakken (2013) adopts a punishment that is a linear and increas-
ing function of the exceeding fishing-quota violation with a constant enforcement intensity. However, when 
evaluating the benefits of an IT fisheries control system, the enforcement intensity needs to be endogenous. 
Additionally, for simplicity and without loss of generality, we assume the punishment to be constant. A pun-
ishment as in Nostbakken (2013) would lead to similar conclusions. For reviews on regulatory enforcement 
in fisheries see Nostbakken (2008) and Jensen et al. (2017).
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with µ > 0.
Hence, the expected profit of fisher i in (3) can be expressed as follows: 

 πe
i,t+1 (qi (Xt) , q−i (Xt) ; Xt) = πi,t+1 (qi (Xt) , q−i (Xt) ; Xt) − F (qi (Xt) ; Xt) λ (H (Xt)) . (5)

Then, following the principle of maximizing expected profit, as stated in Eq. (5), the fish-
ers engage in a matrix game at each time t, selecting between the non-compliant strategy 
qCN (Xt) and the compliant strategy qQ (Xt).

To complete the setup, we will assume that for fisher i ∈ {1, 2}, the profit πi is a generic 
function of the harvesting levels qi and q−i, satisfying the following properties. We will drop 
the dependence of X and π on time, as well as the dependence of qi and q−i on the level of 
biomass, to emphasize that these properties hold for any time t and any level of biomass X. 
In the following sections, we will consider general profit functions that satisfy the following 
standard assumptions.

Assumption 1 For each agent  i ∈ {1, 2}, for each X ≥ 0  and for all qi + q−i ≤ X , let

(A) πi (qi, q−i; X) be continuous in qi and of class C2 in (qi, q−i);
(B) ∂2πi

∂q2
i

(qi, q−i; X) be strictly negative;

(C) ∂2πi

∂qi∂q−i
(qi, q−i; X) be strictly negative;

(D) πi (qi, q−i; X) = π−i (q−i, qi; X) for all (qi, q−i).

Strictly negative second derivatives in Assumptions 1(B) and 1(C) ensure that marginal 
profits are decreasing in qi and q−i. By the implicit function theorem, Assumptions 1(A), 
1(B) and 1(C) imply the existence of downward-sloping best-reply functions. These condi-
tions ensure a character of monotonicity to the first derivative in the first order condition 
and a non-negligible part of the approximation of the first derivative function that is linear 
for infinitesimal increments on qi. According to the definition of expected profits in (5), 
Assumption 1(D) implies πe

i (qi, q−i; X) = πe
−i (q−i, qi; X) for all (qi, q−i). This implies 

that the game under consideration is symmetric, so from now on we can drop the subscript 
i from the profit function and from the expected profit function. Next, we recall some basic 
properties of the profit functions for the fishing quota duopoly game.

2.1 Preliminary Results

Consider the model setup described above, where we simplify notation by removing the 
time dependence of variables. Hence, the biomass level at time t is denoted as X and the 
profit and expected profit at time t are denoted as π and πe, respectively. A fisher has two 
options: either comply with regulations and harvest the quantity qQ (X), or non-comply 
with regulations and harvest the quantity qCN (X). At each time t, fishers’ decisions are 
modeled as a matrix game based on the biomass level X. Before delving into the Nash 
equilibria of this matrix game, we highlight some important properties concerning agents’ 
profits. The proof of Property 1 is in Appendix B.
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Property 1 (Properties of profits). In the game under consideration, the following relations 
hold:
(A) π

(
qQ (X) , qQ (X) ; X

)
≥ π

(
qQ (X) , qCN (X) ; X

)
;

(B) π
(
qCN (X) , qQ (X) ; X

)
≥ π

(
qCN (X) , qCN (X) ; X

)
;

(C) π
(
qCN (X) , qQ (X) ; X

)
≥ π

(
qQ (X) , qQ (X) ; X

)
, with 

π
(
qCN (X) , qQ (X) ; X

)
> π

(
qQ (X) , qQ (X) ; X

)
 for qCN (X) ̸= qQ (X);

(D) π
(
qCN (X) , qCN (X) ; X

)
≥ π

(
qQ (X) , qCN (X) ; X

)
, with 

π
(
qCN (X) , qCN (X) ; X

)
> π

(
qQ (X) , qCN (X) ; X

)
 for qCN (X) ̸= qQ (X);

(E) π
(
qCN (X) , qQ (X) ; X

)
≥ π

(
qQ (X) , qCN (X) ; X

)
.

Note that since the quantity 

 πe (qi (X) , q−i (X) ; X) − π (qi (X) , q−i (X) ; X) = −F (qi (X) ; X) λ (H (X))

does not depend on q−i (X), (A)-(B) in Property 1 hold also for the 
expected profit function πe. More specifically, even assuming that 
π

(
qCN (X) , qQ (X) ; X

)
= π

(
qCN (X) , qCN (X) ; X

)
, which happens for example 

when the demand of fish is inelastic and the cost of harvesting does not depend on the oppo-
nent’s landing, we can have πe

(
qCN (X) , qQ (X) ; X

)
> πe

(
qCN (X) , qCN (X) ; X

)
. 

This is because the arrival rate λ (H (X)) is assumed to be increasing in the total har-
vesting H (X). Instead, (C)-(E) in Property 1 are not guaranteed for the expected profit 
function πe.

3 The Short-Run Harvesting Game with Quotas

This section addresses a short-run version of the game in which the biomass is considered 
constant. Next, in Sect. 4, we will discuss a long-run version of the model as a repeated 
game, where the biomass evolves according to a specific growth function.
Assuming constant the level of biomass X, the two fishers play the following static game:

Employing this two-person matrix game, we analyze how the two fishers interact and how 
their profits are affected by Assumption 1. We first explore a scenario where the control sys-
tem is not operational. Then, we will examine the same game with a punishment mechanism 
that follows a Poisson process with a hazard rate dependent on the biomass, as outlined in 
Sect. 2.
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3.1 No Punishment

We begin the analysis with the scenario where there is no punishment, leading to expected 
profits being the same as actual profits. The outcome without enforcement is agents’ non-
compliance, or, in other words, the well-known tragedy of the commons (see Hardin (1968)). 
The next proposition (the proof of which is in Appendix B) characterizes this case.

Proposition 1 (The fisher’s dilemma/delight). Consider the short-run harvesting game with 
quotas when µ = 0 (no punishment). For all X, either qQ (X) = qCN (X) or the game has 
the unique Nash equilibrium 

(
qCN (X) , qCN (X)

)
. Moreover, the game is a prisoner’s 

dilemma when π
(
qQ (X) , qQ (X) ; X

)
> π

(
qCN (X) , qCN (X) ; X

)
 or a prisoner’s 

delight when the reverse inequality holds.16

The investigation conducted so far suggests that managing fishing quotas is similar to deal-
ing with non-compliant strategies in a prisoner’s dilemma or a prisoner’s delight game 
under general conditions. Specifically, when there is no control on landings, fishers either 
play a prisoner’s dilemma game or a prisoner’s delight game, which in turn affects the level 
of fish population in the ecosystem when the biomass is harvested. This aspect is analyzed 
in Sect. 4 by introducing a time dimension to the game and dynamics for the biomass. Here, 
we explore how auditing and punishment, in the form of a Poisson process with a hazard 
rate depending on the biomass, can encourage compliance with the regulations in the static 
game.

3.2 Controls Based on Fishers’ Harvesting

If the controls depend on the level of harvesting and the punishment is a positive value 
denoted as µ > 0, then the expected profit of a fisher who complies with the rules is the same 
as her actual profit. However, for a non-compliant fisher, the expected profit is the profit 
minus the fine µ multiplied by the intensity of control. The intensity of control is denoted 
as λ1 when there is only one non-compliant fisher, and λ2 when there are two non-compliant 
fishers, with λ2 > λ1. To follow the assumptions about the control function, we require 
that λ1 and λ2 lie between 0 and 1. The possible outcomes of the short-run game, when 
punishment is effective, are summarized in the proposition below, the proof of which is in 
Appendix B.

Proposition 2 (Harvesting game with quotas and punishment). Assume 1 > λ2 > λ1 > 0 
and µ > 0. Set

 

µ1 : = π
(
qCN (X) , qQ (X) ; X

)
− π

(
qQ (X) , qQ (X) ; X

)
;

µ2 : = π
(
qCN (X) , qCN (X) ; X

)
− π

(
qQ (X) , qCN (X) ; X

)  (6)

16 Also known as anti-dilemma game, harmony game or efficient dominant-strategy game, a prisoner’s delight  
game is further characterized by the condition πe

(
qCN (X) , qCN (X) ; X

)
> πe

(
qCN (X) , qQ (X) ; X

)
 

which cannot be met in our setup. Nevertheless, we use the denomination prisoner’s delight game as in a 
classical anti-coordination game there is a Pareto optimal solution that is also the unique Nash equilibrium of 
the game. See Wang and Yang (2003), for the classification of 2 × 2 matrix games.
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and

 µ3 := π
(
qCN (X) , qCN (X) ; X

)
− π

(
qQ (X) , qQ (X) ; X

)
. (7)

Moreover, define the constants µ̃1 = µ1/λ1, µ̃2 = µ2/λ2, µ̃1
3 = µ3/λ1 and µ̃2

3 = µ3/λ2. 
The following statements hold:

 ● For µ < min {µ̃1; µ̃2}, the unique Nash-equilibrium is 
(
qCN (X) , qCN (X)

)
 and the 

game is a prisoner’s delight for µ < µ̃2
3 and a prisoner dilemma for µ > µ̃2

3;
 ● For µ̃2 < µ < µ̃1, the unique Nash-equilibria are 

(
qQ (X) , qCN (X)

)
 and (

qCN (X) , qQ (X)
)
, and the game is of anti-coordination;

 ● For µ̃1 < µ < µ̃2, the unique Nash-equilibria are 
(
qCN (X) , qCN (X)

)
 and (

qQ (X) , qQ (X)
)
, and the game is of coordination;

 ● For µ > max {µ̃1; µ̃2}, the unique Nash-equilibrium is 
(
qQ (X) , qQ (X)

)
 and the 

game is a prisoner’s delight for µ > µ̃1
3 and a prisoner dilemma for µ < µ̃1

3.
Let us remark that it is always possible to increase the level of punishment so that the com-
pliant harvesting strategy 

(
qQ, qQ

)
  is the unique Nash equilibrium of the game. Specifi-

cally, the punishment should be such that µ > µ∗ := max {µ̃1; µ̃2}. However, if the control 
intensities λ1 and λ2 are low, the required punishment µ∗ to ensure compliance may be 
extremely high and difficult for fishers to be accepted.

3.3 Certain Punishment (CATCH)

Assume that controls are certain and the amount of punishment is positive, i.e. µ > 0. This 
case can be achieved if an IT control system such as CATCH is implemented in the fishery. 
In this case, the expected profit of a compliant fisher is the same as her actual profit. On 
the other hand, the expected profit of a non-compliant fisher is equal to the profit minus the 
certain fine, µ. The proposition below (the proof of which is in Appendix B) summarizes the 
possible outcomes of the short-run game when punishment is effective.

Proposition 3 (Harvesting game with quotas and certain punishment). Assume λ = 1 and 
µ > 0. Consider µ1, µ2 and µ3 defined in (6)-(7). Then, the results of Proposition 2 hold once 
µ̃1 and µ̃2 are replaced with µ1 and µ2, respectively, and once µ̃1

3 and µ̃2
3 are both replaced 

with µ3.

In order for the compliant strategy 
(
qQ (X) , qQ (X)

)
 to be the unique Nash equilibrium of 

the game, the necessary level of punishment is µ > µ+ := max {µ1, µ2}. This means that 
the imposed fine should be slightly higher than the maximum profit gap a fisher can achieve 
by switching from the compliant to the non-compliant strategy. However, this fine may still 
be much lower than in the case without the CATCH system and may be considered reason-
able and acceptable by most fishers.

So far, the investigation has been based on the assumption that the biomass level remains 
constant and is equal to X. Under this assumption, the CATCH mechanism, which ensures 
a probability of control and punishment independent of the level of harvesting, has the 
advantage that 

(
qCN (X) , qCN (X)

)
 (i.e., the non-compliant strategy) is never a Nash 
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equilibrium of the game for a reasonably high fine. However, the biomass level X changes 
over time and the survival of the species can be threatened by a fixed mechanism of quotas 
even in the case of fishers who comply with the rules. This is demonstrated in the following, 
where standard logistic growth is assumed for the biomass, and the outcome under the com-
pliant strategy, ensured for example by the CATCH system, is contrasted with that under 
the non-compliant strategy. Furthermore, we show that a certain punishment, ensured by the 
CATCH system with a constant fine, may also induce non-compliance when the biomass 
level evolves, suggesting the implementation of a punishment mechanism that depends on 
the levels of biomass and harvesting.

4 The Long-Run Harvesting Game with and without Quotas: The Case 
of Logistic Growth, Constant Price, and Quadratic Harvesting Costs

The investigation of the short-run game of Sect. 3 shows that the CATCH system, when 
combined with a specific punishment plan, can effectively ensure compliance with the quo-
tas. The fine imposed is proportionate to the profit gap resulting from not complying to the 
quotas. However, it is important to conduct a long-term analysis to uncover potential risks 
associated with the quota system. Firstly, even compliance with the quota system may not 
prevent a situation of over-exploitation. Secondly, the equilibria resulting from sustainable 
harvesting through quota compliance may be unstable, making the system susceptible to 
disruptions in the biomass levels. These disruptions are often caused by external factors or 
shocks, such as disease outbreaks, seasonal changes in the ecosystem, and the invasion of 
predatory species.17

The fishing quota system poses certain dangers, which can be illustrated using a well-
known dynamic framework for the evolution of biomass. In this model, we assume the 
resource undergoes logistic growth under harvesting, see, e.g., Gamito (1998). In discrete 
time, this dynamics can be written as18

 
Xt+1 = Xt + rXt

(
1 − Xt

K

)
− H (Xt) (8)

where r is the specific growth rate, K is the carrying capacity of the species and H (X) is the 
current harvesting, as specified below. For simplicity, we will omit the explicit dependence 
of biomass X on t when not strictly necessary.

According to the fishery model developed earlier, we consider the actions of two fishers. 
Moreover, landing costs are quadratic and biomass-dependent with the following specifica-
tion (Smith 1969)19

17 The 2002 reform of the EU’s Common Fisheries Policy Commission of the European Communities (2009) 
stated that the exploitation of aquatic living resources should ensure economic, environmental and social sus-
tainability. Sustainability means that the exploitation of a stock should be done in such a way that the future 
exploitation of the stock will not be prejudiced and that it does not harm the marine eco-systems, Commission 
of the European Communities (2002).
18 This natural growth function is commonly used to describe stock growth in fisheries, see, e.g., Clark (1990) 
and Nostbakken (2013), Bischi et al. (2015).
19 This cost function is convex and increasing in extraction, while it is decreasing in stock size. This quadratic 
cost structure is commonly used to represent expenses in models of renewable resources, where the cost of 
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c (qi; X) = ψq2

i

X
 (9)

where qi represents the amount of a specific species of fish caught by fisher i and wholly sup-
plied to the market. The constant ψ is a technological coefficient, the higher ψ is the higher 
the cost of harvesting for a given amount of biomass. This formulation for the cost reflects 
the impact of congestion and gear saturation issues on the fishery production function.

To complete the economic setup, we consider a fishery market characterized by a con-
stant price a as in Nostbakken (2013). The assumption of a fixed price is commonly sup-
ported by the availability of numerous substitutes for each fish species, and the fact that fish 
is considered a staple food for most consumers. The profit of fisher i is then given by 

 
π (qi, q−i; X) = aqi − ψq2

i

X
. (10)

Without fishing quotas imposed by a regulator, fishers maximize myopically their current 
profit as common in open access fisheries, see Hardin (1968) and Quaas and Skonhoft 
(2022). Hence, their level of harvesting solves the following maximization problem: 

 
argmax

qi∈[0,X−q−i]
π (qi, q−i; X) (11)

that has solution 

 

BRi (q−i; X) =




qCN (X) := aX
2ψ if aX

2ψ < X − q−i

X − q−i if aX
2ψ > X − q−i

. (12)

Moreover, we assume that fishers act as Nash players, therefore at each time t their har-
vesting solves q1 = BR1 (q2; X) and q2 = BR2 (q1; X). Assuming ψ > a(> 0), there is a 
unique solution 

(
qCN (X) , qCN (X)

)
 of the system.20 This solution implies that without 

restrictions each fisher finds it convenient to harvest the Cournot-Nash equilibrium harvest-
ing qCN (X) gaining a profit 

 
π

(
qCN (X) , qCN (X) ; X

)
:= a2X

4ψ
 (13)

and the total harvesting is 

extraction increases as the resource becomes scarcer, see Clark (1990), Szidarovszki and Okuguchi (1998), 
Conrad and Smith (2012) and Nostbakken (2013). Bischi et al. (2013) present its derivation from a produc-
tion function with fishing effort (labor) and fish biomass (capital) as production inputs.
20 The condition ψ > a is imposed to avoid the trivial and unrealistic case such that the Cournot-Nash strat-
egy implies the harvesting of the entire biomass in a single period. In fact, violating this condition allows for 
multiple Cournot-Nash equilibrium harvesting, all of which imply the harvesting of the entire biomass in a 
single period.
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H (X) = 2qCN (X) = aX

ψ
. (14)

To investigate the problem of over-exploitation caused by Cournot-Nash harvesting among 
myopic fishers in a dynamic setting, we will employ the concept of maximum sustain-
able catch or MSY. MSY is a widely used tool for managing fisheries and represents the 
level of current harvesting that maximizes total landing while preserving the existence of 
the fish species. The MSY with logistic growth can be calculated easily and is given by 
HMSY = Kr

4 , see Jensen (1975). Sustainable harvest is defined as the MSY, while any 
catch above the MSY is considered over-exploitation. It is evident that in a dynamic setting, 
Cournot-Nash harvesting among myopic fishers leads to over-exploitation when 

 
X >

rψ

4a
K. (15)

To prevent over-exploitation, a regulator can enforce catch limits through TACs based on 
MSY and then allocate fishing quotas to individual exploiters. Specifically, the authority can 
set a maximum limit on the amount of resources each fisher can harvest (quota), which must 
not exceed a certain percentage, denoted by η ∈ (0, 1], of the MSY divided by the number 
of fishers, that is Q = ηKr

8 . Hence, when a fisher complies with the quota, she harvests the 
quantity 

 
qQ (X) = min

{
aX

2ψ
,

ηKr

8

}
. (16)

The individual profits of a fisher that harvests a fraction η of the MSY quota are given by 

 
π (Q, Q; X) = ηKr

8

(
a − ηKrψ

8X

)
. (17)

In the following, we compare the global dynamics of the fishery model under six different 
scenarios. Benchmarks without quotas: (i) No harvesting, H (X) = 0, (ii) (Partial) MSY 
harvesting, H (X) = ηKr

4 , (iii) Cournot-Nash harvesting, H (X) = 2qCN (X). Bench-
marks with quotas: (iv) Full compliance at MSY, H (X) = 2qQ (X), (v) Partial compliance 
at MSY, (vi) Full compliance at partial MSY. The last three scenarios require enforcement 
mechanisms that involve stringent controls by a supervisory authority. Moreover, the last 
scenario can be regarded as a robustness benchmark of the case (iv) and is reported in 
Appendix A for the sake of space.

This comparison highlights several risks associated to these harvesting strategies. 
Cournot-Nash harvesting leads to over-exploitation and reduces the species’ resilience. On 
the other hand, MSY prevents over-exploitation but diminishes resilience against negative 
biomass level fluctuations. Finally, the fishing quota system does not completely solve over-
exploitation issues but it enhances the species’ resilience capabilities.

We begin by examining the first three scenarios, which are regarded as benchmark cases. 
Subsequently, we analyze harvesting compliance within a fishing quota system and compare 
the overall dynamics of this model with the three benchmarks.
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4.1 Benchmarks Without Quotas

Here let us focus on three benchmark cases without quotas of the dynamic model described 
in Eq. (8), which illustrate the dynamics of the fishery. In the first benchmark, we examine 
the case where there is no harvesting. In the second benchmark, harvesting is defined as a 
fraction η ∈ (0, 1], of the maximum sustainable catch so that in (8) harvesting is represented 
by H (X) = ηKr

4 . We refer to this case as partial MSY harvesting when η ∈ (0, 1) and 
MSY harvesting when η = 1. In the third benchmark, Cournot-Nash harvesting, each agent 
harvests at the Cournot-Nash level, meaning H (X) = aX

ψ , where a < ψ to ensure that 
H (X) < X .

In the next proposition (the proof of which is in Appendix B), we review the possible 
equilibria, their stability properties and the global dynamics for these three benchmark cases.

Proposition 4 (Dynamics without quotas). Assume r, K > 0, ψ > a > 0 and η ∈ (0, 1]. In 
the case of:

(i) No harvesting (H (X) = 0), the equilibria of (8) are X̄N
1 = 0 and the carrying capac-

ity X̄N
2 = K.

 ● The extinction equilibrium X̄N
1  is always unstable;

 ● For 0 < r < 2, the carrying capacity equilibrium X̄N
2  is asymptotically stable with 

basin of attraction given by B
(
X̄N

2
)

=
(
0, 1+r

r K
)
;

 ● At r = 2, X̄N
2  loses stability through a flip bifurcation, after which a period-dou-

bling regime conjugated with the standard logistic map occurs, that is, orbits in (
0, 1+r

r K
)
 are attracted to a 2k-cycle for 2 < r ⪅ 2.56994 while they are chaotic 

for 2.56994 ⪅ r ≤ 3;

 ● For r > 3, resource extinction occurs in finite time.

(ii) (Partial) MSY harvesting (H (X) = ηKr
4 ), the equilibria of (8) are

 
X̄MSY

1,2 = K

2

(
1 ∓

√
1 − η

)
> 0. (18)

 ● For η ∈ (0, 1), X̄MSY
1  is always unstable, while X̄MSY

2  is asymptotically stable 

with basin of attraction given by B
(
X̄MSY

2
)

=
(

X̄MSY
1 , K

2+r(1+
√

1−η)
2r

)
 for 

0 < r < 2√
1−η

 ; at r = 2√
1−η

, X̄MSY
2  loses stability through a flip bifurcation, 

after which a period-doubling regime conjugated with the standard logistic map 

occurs, that is, orbits in 
(

X̄MSY
1 , K

2+r(1+
√

1−η)
2r

)
 are attracted to a 2k-cycle 

for 2√
1−η

< r ⪅ 2.56994√
1−η

 while they are chaotic for 2.56994√
1−η

⪅ r ≤ 3√
1−η

, finally for 
r > 3√

1−η
 resource extinction occurs in finite time;
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 ● For η = 1, X̄MSY
1,2 = X̄MSY = K

2 ; K
2  is a semi-asymptotically stable (unstable on 

the left-hand side and asymptotically stable on the right-hand side) equilibrium with 

basin of attraction B
(

K
2

)
=

[
K
2 , K(2+r)

2r

]
. All trajectories starting with initial con-

ditions outside B
(

K
2

)
 lead to extinction in finite time.

(iii) Cournot-Nash harvesting 
(

H (X) = aX
ψ

)
:

 ● For 0 < r < a
ψ , the extinction equilibrium X̄CN

1 = 0 is the unique equilibrium in 
[0, +∞) and is asymptotically stable;

 ● At r = a
ψ , a transcritical bifurcation occurs at which the extinction equilibrium 

X̄CN
1  merges with the equilibrium

 
X̄CN

2 = K

(
1 − a

rψ

)
. (19)

 ● For a
ψ < r < 2 + a

ψ , X̄CN
1  is unstable, X̄CN

2  is asymptotically stable with basin of 

attraction given by B
(
X̄CN

2
)

=
(

0, K
1+r− a

ψ

r

)
;

 ● At r = 2 + a
ψ , X̄CN

2  loses stability through a flip bifurcation, after which a period-
doubling regime conjugated with the standard logistic map occurs, that is, orbits  
in 

(
0, K

1+r− a
ψ

r

)
 are attracted to a 2k-cycle for 2 + a

ψ < r ⪅ a
ψ + 2.56994 while they 

are chaotic for a
ψ + 2.56994 ⪅ r ≤ a

ψ + 3;

 ● For r > 3 + a
ψ , resource extinction occurs in finite time.

Based on the global analysis of the three benchmark models, we observe that a high growth 
rate results in extinction in all cases except under MSY. When there is no harvesting, extinc-
tion due to resource overcrowding occurs when the growth rate exceeds the threshold r = 3. 
In the case of partial MSY harvesting, extinction occurs when the growth rate exceeds the 
threshold r = 3√

1−η
> 3. For Cournot-Nash harvesting, extinction occurs for growth rates 

above the threshold r = 3 + a
ψ > 3. Therefore, harvesting helps alleviate the issue of over-

crowding and harvesting based on MSY prevents extinction by overcrowding. Additionally, 
MSY and partial MSY do not lead to extinction due to the low reproduction rate of the 
species of fish. On the other hand, Cournot-Nash harvesting can cause extinction and an 
extinction lower-bound threshold of r exists and is given by the ratio a/ψ.

Analyzing the equilibria of the benchmark models, we observe that the equilibrium lev-
els under MSY depend solely on biological parameters such as the growth rate (r) and 
the carrying capacity (K). In contrast, the equilibrium levels of biomass in the case of 
Cournot-Nash harvesting also depend on the selling price (a) and on the technological coef-
ficient of the cost function of harvesting (ψ). Another important distinction between MSY 
and Cournot-Nash harvesting is the issue of over-exploitation. Under favorable economic 
conditions (a > rψ), Cournot-Nash harvesting leads to the depletion of biomass and its 
extinction. On the other hand, MSY always ensures a non-extinction equilibrium for the fish 
species. Conversely, under negative economic conditions (a < rψ), the Cournot-Nash strat-
egy implies a lower level of exploitation of the fish species compared to the MSY strategy. 
In this case, the Cournot-Nash strategy is advantageous and preferable for the survival and 
resilience of the species.
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The next proposition clarifies the existence of a threshold price ã such that for a price 
below the threshold, the biomass equilibrium under Cournot-Nash harvesting is higher than 
the biomass equilibrium under MSY harvesting, and vice versa when the price is above the 
threshold.

Corollary 1 Consider biomass equilibria under (partial) MSY harvesting, X̄MSY
2 , and 

Cournot-Nash harvesting, X̄CN
2 , with a < rψ so that X̄CN

2 > 0. Define the threshold price 
ã = rψ

2 (1−
√

1 − η).

 ● If 0 < a < ã, then X̄CN
2 > X̄MSY

2  and B
(
X̄CN

2
)

⊃ B
(
X̄MSY

2
)
.

 ● If ã < a < rψ, then X̄CN
2 < X̄MSY

2  and neither B
(
X̄CN

2
)

⊃ B
(
X̄MSY

2
)
 nor 

B
(
X̄CN

2
)

⊂ B
(
X̄MSY

2
)
.

In Corollary 1, we found that when the selling price is within the range (0 <)a ≤ ã, the 
Cournot-Nash harvesting does not lead to over-exploitation and helps the fish species main-
tain better resilience. In this scenario, a fishing quota system is not needed. However, when 
ã < a < rψ, the Cournot-Nash harvesting results in a reduction of the equilibrium level of 
biomass, indicating over-exploitation. It also increases the vulnerability of the fish popula-
tion to overcrowding, potentially leading to extinction. This vulnerability can be quantified 

in terms of biomass levels in the range 
(

K
1+r− a

ψ

r , K
2+r(1+

√
1−η)

2r

)
. Despite these draw-

backs, this method provides greater resilience for the fish species in the event of shocks that 
reduce the ecosystem’s fish population.

We are now ready to analyze the case where there is a monitoring system to track the 
amount of fish caught in the fishery and the agents respect the quotas imposed by the 
regulator.

4.2 Fishing Quota System: (iv) Full Compliance at MSY

Let us consider a scenario where fishers always adhere to a set of fixed fishing quotas based 
on MSY. This system emulates a fishery where a comprehensive tool, like the CATCH sys-
tem, makes it unavoidable to dodge controls, and severe penalties make the non-compliant 
approach unprofitable. When measuring the resilience of the fishery in terms of the stability 
of non-extinction outcomes, this fishery policy makes the resource more resilient compared 
to Cournot-Nash harvesting or MSY harvesting quotas in each period. However, there are 
still drawbacks to this policy. For instance, there could be a stable non-extinction equilib-
rium that the fishery asymptotically approaches. Additionally, there could be a stable equi-
librium where the fish species faces depletion and over-exploitation. According to Corollary 
1, the latter scenario might occur when r < 2a

ψ(1+
√

1−η) .

Following fishing quotas and guided by the principle of economic convenience, agents 
choose the Cournot-Nash harvesting level qCN (X) = aX

2ψ  as long as it is below the allo-

cated quota Q = ηKr
8 , and they harvest their own quota otherwise. Here we assume that 
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agents comply with the quota because of the strict enforcement policies implemented by the 
authority.21 The resulting total harvesting is given by 

 

H (X) =





aX
ψ if 0 ⩽ X < X̃ = ηKrψ

4a

ηKr
4 if X > X̃ = ηKrψ

4a

. (20)

The map modeling the resource growth in compliance with the fishing quota system is then 
the following: 

 
Xt+1 = Xt + rXt

(
1 − Xt

K

)
− min

{
aXt

ψ
; ηKr

4

}
. (21)

Notice that the map in (21) is piecewise smooth, as it changes definition for the biomass 
level 

 
X̃ = ηKrψ

4a
, (22)

at which each fisher catches the same quantity under Cournot-Nash harvesting or under the 
harvesting quota, that is qCN = Q. In the following, we refer to X̃  as the kink point of the 
map, see Bischi et al. (2014), Radi and Gardini (2015) and reference therein. In the next 
proposition (the proof of which is in Appendix B), we characterize the dynamics of the map 
(21) when the quota set by the regulator is equal to the MSY harvesting.

Proposition 5 (Full compliance with quotas at MSY). Consider the fishery growth map with 
harvesting at fishing quotas as in (21), with 0 < a < ψ and η = 1. Consider X̄CN

1,2  and 
X̄MSY  defined in Proposition 4. The following dynamic scenarios occur:
(A) For 0 < r < a

ψ , the extinction equilibrium X̄CN
1  is asymptotically stable, X̄CN

2  is not 
an equilibrium of the model, while the MSY equilibrium X̄MSY  is semi-asymptotically 
stable (unstable on the left-hand side and asymptotically stable on the right-hand side) 

with basin of attraction B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
, all the other orbits converge 

to X̄CN
1 ;

(B) At r = a
ψ , a transcritical bifurcation occurs at which X̄CN

1  and X̄CN
2  merge, the global 

dynamics of the model is as in point (i);
(C) For a

ψ < r < 2a
ψ , X̄CN

1 , X̄CN
2  and X̄MSY  are equilibria of the model, 

X̄CN
1  is unstable, X̄CN

2  is asymptotically stable with basin of attraction 

B
(
X̄CN

2
)

=
(
0, X̄MSY

)
∪

(
K(2+r)

2r ,
K(1+r+

√
1+2r)

2r

)
, X̄MSY  is semi-asymptoti-

cally stable (unstable on the left-hand side and asymptotically stable on the right-hand 

side), with basin of attraction B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
;

21 Compliance with the fishing quota system is taken for granted in this type of fishing. However, it is difficult 
to guarantee with a constant fine scheme even when using a CATCH system for controls. This aspect will be 
discussed later.
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(D) At r = 2a
ψ , equilibrium X̄MSY  merges with X̄CN

2  and both collides with the kink point 
X̃ , otherwise the dynamics is as in (iii);

(E) For 2a
ψ < r < 2 + a

ψ , X̄CN
1  is unstable, X̄CN

2  is asymptotically stable, there are no 
other equilibria and

 
B

(
X̄CN

2
)

=

(
0, max

{
K

1 + r − a
ψ

r
;

K
(
1 + r +

√
1 + 2r

)
2r

})
, (23)

 specifically, for r ≥ 2a
ψ + 2

√
a
ψ , we have B

(
X̄CN

2
)

=
(

0, K
1+r− a

ψ

r

)
;

(F) At r = 2 + a
ψ , equilibrium X̄CN

1  loses stability through a flip (period-doubling) 
bifurcation;

(G) For 2 + a
ψ < r ≤ 3 + a

ψ , equilibria X̄CN
1,2  are unstable and orbits in (

0, max
{

K
1+r− a

ψ

r ; K(1+r+
√

1+2r)
2r

})
 are attracted by either periodic or chaotic 

attractors that for r ≥ 2a
ψ + 2

√
a
ψ  are those of map (8) with Cournot-Nash harvesting;

(H) For r > 3 + a
ψ , resource extinction occurs in finite time.

To further illustrate the implications of the results in Proposition 5, we present some numeri-
cal examples. We will not consider cases (B), (D) and (F) as they are bifurcation points, 
or cases (E) and (G) where there is no overexploitation at the equilibrium X̄CN

2 , because 
X̄CN

2 > X̄MSY  and a fishing quota system can only increase its basin of attraction. We also 
omit case (H) because extinction is the only possible outcome regardless of the fishing quota 
system. Instead, we focus on cases (A) and (C) of the previous proposition.

Case (A) indicates that a fishing quota system does not prevent the risk of extinction even 
in the case of full compliance. A numerical example illustrating this scenario is shown in 
Fig. 1. Panel (a) displays the case of constant harvesting equal to the MSY, and the staircase 
diagrams show that orbits leading to extinction in finite time exist. Panel (b) illustrates the 
case of Cournot-Nash harvesting, with all orbits leading to extinction in finite time. Panel 
(c) depicts the fishing quota system under full compliance, where the equilibrium of MSY 
and the extinction equilibrium coexist and are stable. The initial conditions that lead to 
extinction in finite time in Panel (a) also do so in Panel (c). All the other initial conditions 
lead to the equilibrium of MSY. This numerical example emphasizes that the fishing quota 
system does not eliminate the risk of extinction even in the case of full compliance. The 
fishery is particularly susceptible to external shocks. Any negative shock that reduces the 
equilibrium value of the fish species causes extinction in finite time. This is due to the semi-
stability of the equilibrium of MSY (unstable on the left-hand side and asymptotically stable 
on the right-hand side).

Case (C) indicates that a fishing quota system may not prevent the risk of overexploitation 
even when full compliance is achieved. A numerical example showing this phenomenon is 
reported in Fig. 2. Panel (a) depicts a situation where the harvesting remains constant at the 
MSY, and the staircase diagram indicates that there exist orbits leading to extinction in finite 
time. Panel (b) shows the case of Cournot-Nash harvesting with an equilibrium resulting in 
fish stock levels considerably lower than those observed at the MSY equilibrium. In this 
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case, the equilibrium of over-exploitation is stable and prevents extinction. Finally, Panel (c) 
shows how a fishing quota system under full compliance can produce two stable equilibria. 
However, the equilibrium consistent with the MSY is only right-hand asymptotically stable: 
a negative shock reducing the level of fish in the MSY equilibrium implies convergence in 
finite time to the equilibrium with Cournot-Nash harvesting, causing a substantial depletion 
in the fish stock. In simple terms, overexploitation occurs.

These perils, related to a fixed fishing quota scheme, persist but are somewhat reduced 
imposing a quota that is a fraction of the MSY. For details, see Appendix 1.

4.3 Fishing Quota System: (v) Partial Compliance at MSY

Let us assume that any harvesting activity is controlled by the public authority (CATCH) 
so that a fixed fine µ is imposed with certainty whenever the harvesting level exceeds the 
quota. Additionally, let us assume that the two fishers are using Nash equilibrium strategies. 
Therefore, based on Proposition 3, we can state the harvesting as follows: 

Fig. 2 Growth under map (8) with harvesting: panel (a) at MSY; panel (b) at Cournot-Nash level; Panel (c) 
in compliance with fishing quota at MSY. The dashed line represents biomass X, and the solid black line 
is harvesting. Staircase diagram of the trajectory starting at X0 = 1.9 is in magenta. Staircase diagram 
of the trajectory starting at X0 = 5 is in brown. Staircase diagram of the trajectory starting at X0 = 7.7 is 
in cyan. Equilibria are intersections between the curve of growth and the dashed line and are spotted by a 
black dot. Parameters as in Fig. 1 but r = 1.2a/ψ

 

Fig. 1 Growth under map (8) with harvesting: Panel (a) at MSY; Panel (b) at Cournot-Nash level; Panel 
(c) in compliance with fishing quota at MSY. The dashed line represents biomass X, and the solid black 
line is harvesting. Staircase diagram of the trajectory starting at X0 = 1.9 is in magenta. Staircase 
diagram of the trajectory starting at X0 = 5 is in brown. Staircase diagram of the trajectory starting at 
X0 = 8.5 is in cyan. Equilibria are intersections between the curve of growth and the dashed line and are 
spotted by a black dot. Parameters are a = 0.9; ψ = 1.2; r = 0.9a/ψ; K = 4 and η = 1
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H (X) =





2qCN (X) if µ < min {µ1; µ2}

2qQ (X) if µ > max {µ1; µ2}

qQ (X) + qCN (X) otherwise

 (24)

where µ1 and µ2 are defined in (6).
Indeed, for µ < min {µ1; µ2}, the unique Nash equilibrium is 

(
qCN (X) , qCN (X)

)
, 

hence the total harvesting is 2qCN (X). For µ > max {µ1; µ2}, the unique Nash equi-
librium is 

(
qQ (X) , qQ (X)

)
, hence the total harvesting is 2qQ (X). In the other cases, 

either a non-coordination game takes place with Nash equilibria 
(
qCN (X) , qQ (X)

)
 and (

qQ (X) , qCN (X)
)
, hence the total harvesting is qCN (X) + qQ (X), or the game is of 

coordination, with Nash equilibria 
(
qQ (X) , qQ (X)

)
 and 

(
qCN (X) , qCN (X)

)
. In this 

last case, the total harvesting depends on which one of the two Nash equilibria will be 
played. Here we assume that these two equilibria are played with probability 1

2 . Hence, the 
total harvesting is qCN (X) + qQ (X).

By straightforward algebra and considerations, we obtain the analytical expression for 
the harvesting function (24), see Appendix C. This leads to the following map that models 
the resource growth when there is only partial compliance with the fishing quota system: 

 

Xt+1 =




Xt + rXt

(
1 − Xt

K

)
− ηKr

4 if X̃ < Xt < X+

Xt + rXt

(
1 − Xt

K

)
− aXt

ψ otherwise
, (25)

where X̃  as in (22) and 

 
X+ =

ψ (aKrη + 8µ) + ψ

√
(aKrη + 8µ)2 − a2K2r2η2

4a2 .
 (26)

The map in (25) not only admits the point of non-differentiability X̃ , which is the kink point 
defined in (22), but also a point of discontinuity X+, defined in (26). Moreover, the map 
(25) reduces to the map (8) with Cournot-Nash harvesting when µ = 0, see again Appendix 
C for details. In the next proposition (the proof of which is in Appendix B), we analyze the 
dynamics of (25) when a quota is set at the MSY. We focus on the equilibria, their stability 
and their basins of attraction for all possible values of the fine µ.

Proposition 6 (Partial compliance with quotas at MSY). Consider the fishery growth map 
with partial compliance with the fishing quotas as in (25), with 0 < a < ψ and η = 1. Con-
sider X̄CN

1,2  and X̄MSY  defined in Proposition 4. Define 

 
µ̃ := K(2a − rψ)2

32ψ
and µ̂ := min

{
K

(
r2ψ − 2a(r + 2)

)2

32rψ (2 + r)
;

aK
(
2a (2 + r) − r2ψ

)
8rψ

}
. (27)

The following dynamic scenarios occur:
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(A) For 0 < r < a
ψ , extinction equilibrium X̄CN

1 is asymptotically stable, X̄CN
2  is not an 

equilibrium of the model, while

 ● If µ < µ̃, the MSY equilibrium X̄MSY  is not feasible, all the other orbits converge 
to X̄CN

1 ;
 ● If µ ≥ µ̃, the MSY equilibrium X̄MSY  is semi-asymptotically stable (unstable on 

the left-hand side and asymptotically stable on the right-hand side) with basin of 

attraction that is either B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
 when µ > µ̂, or a subset 

of 
[
X̄MSY , K(2+r)

2r

]
 when µ < µ̂, and all the other orbits converge to X̄CN

1 ;

(B) At r = a
ψ , a transcritical bifurcation occurs at which X̄CN

1  and X̄CN
2  merge, the global 

dynamics of the model is as in point (i);
(C) For a

ψ < r < 2a
ψ , X̄CN

1 , X̄CN
2  and X̄MSY  are equilibria of the model, X̄CN

1  is 
unstable, X̄MSY  is semi-asymptotically stable (unstable on the left-hand side and 
asymptotically stable on the right-hand side) with basin of attraction that is either 

B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
 when µ > µ̂, or a subset of 

[
X̄MSY , K(2+r)

2r

]
 when 

µ < µ̂, X̄CN
2  is asymptotically stable;

(D) At r = 2a
ψ , equilibrium X̄MSY  merges with X̄CN

2  and both equilibria collide with the 
kink point X̃  when µ > µ̂; otherwise the dynamics is as in (iii);

(E) For 2a
ψ < r < 2 + a

ψ , X̄CN
1  is unstable, X̄CN

2  is asymptotically stable and there are no 

other equilibria and, for r ≥ 2a
ψ + 2

√
a
ψ ; moreover, it is B

(
X̄CN

2
)

=
(

0, K
1+r− a

ψ

r

)
;

(F) At r = 2 + a
ψ , equilibrium X̄CN

1  loses stability through a flip (period-doubling) 
bifurcation;

(G) For 2 + a
ψ < r ≤ 3 + a

ψ , equilibria X̄CN
1,2  are unstable and orbits in (

0, max
{

K
1+r− a

ψ

r ; min
{

X+,
K(1+r+

√
1+2r)

2r

}})
 are attracted by either periodic 

or chaotic attractors that for r ≥ 2a
ψ + 2

√
a
ψ  are those of map (8) with Cournot-Nash 

harvesting;

(H) For r > 3 + a
ψ , resource extinction occurs in finite time.

The results in Proposition 6 indicate that a low fine µ can have four possible effects. First, 
it can reduce the basin of attraction of the MSY equilibrium. Second, it can render the 
MSY equilibrium unfeasible. Third, it can expand the basin of attraction of the equilibria of 
overexploitation. Fourth, it can broaden the set of orbits that converge to extinction in finite 
time. The specific outcome among these four scenarios depends on the values of the other 
parameters.

These perils of the fishing quota system with fixed fines and partial compliance are illus-
trated in the following numerical simulations. Figure 3 shows the dynamics of map (25) 
under three different levels of fine. The parameters are chosen such that the MSY equilib-
rium X̄MSY  exists and is stable for µ > µ̃ and does not exist for µ < µ̃. There is only one 
other unique stable equilibrium, that is the extinction equilibrium. Specifically, we are in the 
parameter region r ≤ a/ψ, that is case (A) of Proposition 6. We know that under full com-
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pliance, the basin of attraction of the MSY equilibrium is B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
, 

see Proposition 5. All the other orbits lead to extinction in finite time. If the fine µ is suf-
ficiently high, e.g. µ = 1.5, the basin of attraction of equilibrium X̄MSY  remains the same 
and all other orbits imply extinction in finite time, see Fig. 3(a). However, reducing the fine 
µ to 0.2, we observe that the basin of attraction of the MSY equilibrium, X̄MSY , shrinks 
to B

(
X̄MSY

)
=

[
X̄MSY , X+]

, see Fig. 3(b). Further reducing µ from 0.2 to 0.05, we 
observe that the MSY equilibrium disappears and all orbits converge to the equilibrium of 
extinction X̄CN

1 , see Fig. 3(c). Hence, even under the certainty of punishment, avoiding 
extinction depends on the imposed fine.

The numerical example in Fig. 4 illustrates a situation where a/ψ < r < 2a/ψ,  
which corresponds to case (C) of Proposition 6. When µ > µ̃, both the MSY equi-
librium, X̄MSY , and the equilibrium of overexploitation, X̄CN

2 , are stable while the 
equilibrium of extinction is unstable. However, when µ < µ̃ the equilibrium of over-
exploitation X̄CN

2  is the only stable equilibrium and the MSY equilibrium does not 
exist. Moreover, we know that under full compliance, the basin of attraction of the 

equilibrium of MSY is B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
, see Proposition 5. The set 

B
(
X̄CN

2
)

=
(
0, X̄MSY

)
∪

(
K(2+r)

2r ,
K(1+r+

√
1+2r)

2r

)
 is instead the basin of attraction 

of the equilibrium of overexploitation. This is the scenario represented in Fig. 4(a), where 
µ = 1.5 > µ̂. 

When we decrease the fine µ from 1.5 to 0.2, corresponding to the case where ̃µ < µ < µ̂, the 
basin of attraction of the MSY equilibrium X̄MSY  shrinks to B

(
X̄MSY

)
=

[
X̄MSY , X+]

 
and the basin of attraction of the over-exploitation equilibrium also shrinks but includes 
points that before were part the basin of attraction of X̄MSY . Instead, the initial conditions 
leading to extinction in finite time expand. See Fig. 4(b). Further reducing µ from 0.2 to 0.05, 
which corresponds to the case µ < µ̂, the MSY equilibrium is not feasible anymore, the equi-

librium of overexploitation is stable and with basin given by B
(
X̄CN

2
)

=
(

0, K 1+r−a/ψ
r

)
. 

All the other orbits lead to extinction in finite time. See Fig. 4(c).
If  2a/ψ < r < 2 + a/ψ, the equilibrium of MSY is not feasible and the trajectories either 

converge to the equilibrium X̄CN
2  or a periodic/chaotic attractor exists. For this parameters 

configuration, increasing the fine µ has the unique positive effect of increasing the basin of 
attraction of the equilibrium X̄CN

2  if stable or the basin of attraction of the periodic/chaotic 

Fig. 3 In blue growth under map (25): Panel (a) µ = 1.5; Panel (b) µ = 0.2; Panel (c) µ = 0.05. The dashed 
line represents biomass X, and the solid black line is harvesting. Staircase diagram of the trajectory start-
ing at X0 = 4 is in magenta. Staircase diagram of the trajectory starting at X0 = 6.5 is in gray. Equilibria 
are intersections between the curve of growth and the dashed line and are spotted by a black dot. Param-
eters are a = 0.9; ψ = 1.2; r = a/ψ − 0.1; K = 3 and η = 1
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attractor otherwise. When we compare Fig. 5(a), obtained with µ = 1.5 > µ̂, with Fig. 5(b), 
obtained with µ = 0.2 < µ̂, and with Fig. 5(c), obtained with µ = 0.05 < µ̂, we observe 
that in Fig. 5(a) the basin of attraction of the equilibrium X̄CN

2  is B
(
X̄CN

2
)

=
(
0, K 2+r

2r

)
, 

while in Fig. 5(b) and Fig. 5(c) this basin shrinks to B
(
X̄CN

2
)

=
(

0, K 1+r−a/ψ
r

)
. Let us 

underline that for r > 2a/ψ, it holds that X̄CN
2 > X̄MSY . Therefore, X̄CN

2  does not repre-
sent an equilibrium of over-exploitation in this last numerical example, and increasing the 
fine µ is beneficial, as it increases the basin of attraction of X̄CN

2 .
In Fig. 6, we consider a scenario where reducing the fine µ only serves to increase the 

orbits that result in extinction in a finite time. The parameters satisfy the conditions of case 
(G) in Proposition 6. Consequently, the equilibrium points are X̄CN

1,2 , both of which are 
unstable. We also have a stable 2-cycle around X̄CN

2 . When µ = 1.5, the basin of attraction 

of this 2-cycle is 
(

0,
K(1+r+

√
1+2r)

2r

)
, as shown in Fig. 6(a). As we reduce the fine µ from 

1.5 to 0.013, the basin of attraction of this stable 2-cycle shrinks to (0, X+), see Fig. 6(b). 
We observe that the cyan trajectory is not visible as it leads to extinction in a single period. 
Further reducing the fine from 0.013 to 0.008, the basin of attraction of the stable 2-cycle 

Fig. 5 In blue growth under map (25): panel (a) µ = 1.5; panel (b) µ = 0.2; panel (c) µ = 0.05. The dashed 
line represents biomass X, and the solid black line is harvesting. Staircase diagram of trajectory starting 
at X0 = 4 is in magenta. Staircase diagram of trajectory starting at X0 = 3 is in cyan. Staircase diagram of 
trajectory starting at X0 = 6.5 is in gray. Equilibria are intersections between the curve of growth and 
the dashed line and are spotted by a black dot. Parameters are a = 0.9; ψ = 1.2; r = 2.1a/ψ − 0.1; K = 4 
and η = 1

 

Fig. 4 In blue growth under map (25): Panel (a) µ = 1.5; Panel (b) µ = 0.2; Panel (c) µ = 0.05. The dashed 
line represents biomass X, and the solid black line is harvesting. Staircase diagram of trajectory starting 
at X0 = 4 is in magenta. Staircase diagram of trajectory starting at X0 = 3 is in cyan. Staircase diagram of 
trajectory starting at X0 = 6.5 is in gray. Equilibria are intersections between the curve of growth and 
the dashed line and are spotted by a black dot. Parameters are a = 0.9; ψ = 1.2; r = 1.5a/ψ; K = 4 and η = 1
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further shrinks to 
(

0, K
1+r− a

ψ

r

)
, see Fig. 6(c). We observe that neither the cyan nor the 

gray trajectories are visible as they lead to extinction in a single period.

4.4 A Comparison of the Benchmarks

To conclude, we compare all benchmarks through the bifurcation diagrams of Figs. 7 and 
8. They show the long-term dynamics of the models for different values of the natural 
growth rate parameter r. Figure 7 depicts the benchmarks without quotas, that is, the cases 
of no harvesting (panel (a)), the case of partial MSY harvesting (panel (b)) and the case 
of Cournot-Nash harvesting (panel (c)). By comparing these three bifurcation diagrams, 
we can see that harvesting increases the risk of extinction. Specifically, for each level of 
the natural growth rate (r < 1), the basin of attraction for extinction (indicated in yellow), 
which represents the set of initial conditions that can lead to extinction, is broader under 
harvesting conditions. Notably, under Cournot-Nash harvesting, this basin is even wider 
than under partial Maximum Sustainable Yield (MSY) harvesting, particularly when η is set 
at, for example, 0.2. Furthermore, at low values of the natural growth rate (r < 1), Cournot-
Nash harvesting results in the extinction of the resource, an outcome that could be avoided 
(at least for some initial conditions) under (partial) MSY harvesting.

Introducing a quota system with full compliance can significantly reduce the risk of 
extinction. Even when the natural growth rate (r < 1) is low, a stable equilibrium exists 
where the fish stock is not depleted, as illustrated by comparing Fig. 7(c) with Fig. 8(a). 
Additionally, when the natural growth rate r falls within the range of (1, 3), implementing a 
quota system enhances the basin of attraction for equilibria that prevent complete resource 
depletion, namely X̄MSY  (with basin in cyan) and X̄CN

2  (with basin in white).
However, for r ∈ (1, 2), both equilibria X̄MSY  and X̄CN

2  coexist stably. Despite full 
compliance with the quota system, X̄CN

2  represents an equilibrium that can lead to resource 
overexploitation. In fact, the stock level at equilibrium X̄CN

2 , corresponding to Cournot-
Nash harvesting, is lower than that at equilibrium X̄MSY , which aligns with Maximum 
Sustainable Yield (MSY) harvesting. This indicates that the risk of overexploitation remains 
under harvesting conditions that comply with quotas; it becomes an issue related to the 
system’s initial conditions.

Notably, an equilibrium consistent with Cournot-Nash levels appears for all r > 1. For 
r ∈ (1, 2), this equilibrium is stable and may suggest overexploitation of the resource. The 

Fig. 6 In blue growth under map (25): Panel (a) µ = 1.5; Panel (b) µ = 0.013; Panel (c) µ = 0.008. The 
dashed line represents biomass X, and the solid black line is harvesting. Staircase diagram of trajec-
tory starting at X0 = 1 is in magenta. Staircase diagram of trajectory starting at X0 = 4.5 is in cyan. 
Staircase diagram of trajectory starting at X0 = 4.35 is in gray. Equilibria are intersections between 
the curve of growth and the dashed line and are spotted by a black dot. Parameters are a = 0.9; ψ = 1.2; 
r = 2 + a/ψ + 0.1; K = 4 and η = 1
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situation improves if quotas are set as a fraction of the MSY, as seen in Fig. 8(c). Con-
versely, the scenario deteriorates in the absence of full compliance, demonstrated in Fig. 
8(b). Under such circumstances, extinction becomes certain for lower growth rates (r < 1),  
similar to when Cournot-Nash harvesting is applied. For higher values of the growth rate 
(r), there exists an equilibrium with MSY harvesting, but it coexists with the Cournot-Nash 

Fig. 8 Bifurcation diagrams with respect to the bifurcation parameter r. Panel (a): 
(iv) harvesting in compliance with quotas at MSY. Panel (b): (v) partial compliance at 
MSY. Panel (c): (vi) full compliance with quotas at partial MSY. Gray dashed curve is 
X = X+ =

(
ψ (aKrη + 8µ) + ψ

√
(aKrη + 8µ)2 − a2K2r2η2

)
/

(
4a2

)
, gray dotted curve is 

X = X̃ := (ηKrψ) / (4a), the red dot-dashed curve is X = K (2 + r) / (2r) (preimages of X̃). The 
blue dot-dashed and red dashed curves are defined in Fig. 7. For each value of r (in the horizontal axis), 
the yellow vertical segments are points that belong to the basin of attraction of extinction (see the caption 
of Fig. 7), the white vertical segments are the basin of attraction of either equilibrium X̄CN

2  or of the 
stable attractor originating when X̄CN

2  is unstable, the cyan vertical segment is the basin of attraction 
of either equilibrium X̄MSY  (X̄MSY

2 , if η < 1) or of the stable attractor originating when X̄MSY  is 
unstable. Each panel also reports the bifurcation values of r as indicated in Proposition 5 (panel (a)), in 
Proposition 6 (panel (b)), in Proposition 7 (panel (c)). Parameters as in Fig. 7

 

Fig. 7 Bifurcation diagrams with respect to the bifurcation parameter r. Panel (a): (i) No harvesting 
(long-run dynamics of X in black). Panel (b): (ii) (partial) MSY harvesting (long-run dynamics of X in 
gray). Panel (c): (iii) Cournot-Nash harvesting (long-run dynamics of X in black). Gray dashed curve 
(X = (1 + r) / (rK)) marks the boundary of the basin of attraction of the equilibrium X̄N

2  or of another 
bounded attractor when X̄N

2  is unstable (panel (a)), blue dot-dashed curves (X = K
(

1 −
√

1 − η
)

 

and X = K
(

2 + r
(

1 +
√

1 − η
))

/ (2r)) mark the borders of the basin of attraction of the equilib-
rium X̄MSY

2  or of another bounded attractor when X̄MSY
2  is unstable (panel (b)), red dashed curve 

(X = K (1 + r − a/ψ) /r) marks the border of the basin of attraction of the equilibrium X̄CN
2  or of 

another bounded attractor when X̄CN
2  is unstable (panel (c)). For a fixed value of r (in the horizontal 

axis), the vertical segments in yellow depict the points belonging to the basin of attraction of extinction 
(that is, Xt → 0 or Xt → −∞ as t → +∞), in white (panel (a)) the basin of attraction of either equi-
librium X̄N

2  or of the stable attractor originating when X̄N
2  is unstable, in cyan the basin of attraction of 

X̄MSY
2  and in white (panel (c)) the basin of attraction of either equilibrium X̄CN

2  or of the stable attrac-
tor originating when X̄CN

2  is unstable. Each panel also reports the bifurcation values of r as indicated in 
Proposition 4. Parameters: K = 4; η = 0.2; ψ = 1 and a = 1
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harvesting equilibrium. For r > 2, the situation resembles that of a fishery operated under 
Cournot-Nash harvesting; while the basin of attraction for extinction may diminish, this 
occurs only for specific values of r. For further details on these figures, please refer to the 
respective captions.

Summing up, the numerical examples show that:
 ● a digitized fishery control system can improve sustainability, but risks linked to improp-

erly adjusted fishing quotas and enforcement remain;
 ● a quota system based on MSY does not prevent the risk of a resource becoming extinct 

over time, even under full compliance;
 ● the risk of extinction remains even if exploiters catch less than what the target imposes 

and choose a strategy to maximize their profits;
 ● non-adherence to quotas may occur due to low biomass, making harvesting unprofit-

able, or high biomass, where benefits of overfishing may exceed penalties. This poses a 
potential risk: if overfishing fines are not set appropriately, stock fluctuations can lead to 
overfishing and declines in resource stocks.

5 Conclusions

The use of new technologies that simplify assessments and verification of catch certificates 
for fishery products, such as the European fisheries certification program CATCH, repre-
sents a breakthrough for the auditing activity in the fishing industry. These technologies 
enable the control of fishing levels at their source without the need for expensive detection 
activities, which are often hindered by limited budgets made available to resource managers.

The introduction of new IT tools to enhance formal enforcement in the management of a 
fishing quota system is aimed at promoting sustainability. However, sustainability remains 
an open problem.

One potential threat to sustainability is linked to the TAC. Even with full compliance with 
the fishing quota regulations, a dynamic model suggests that over-exploitation may occur 
due to a fixed fishing quota established beforehand based on a TAC intended to achieve the 
MSY. The MSY equilibrium is not globally stable and may coexist with an equilibrium of 
over-exploitation or even lead to extinction in finite time. A potential solution could involve 
adaptively adjusting the TAC in response to changes in the biomass level over time. How-
ever, implementing this solution may pose challenges due to technical feasibility issues and 
associated costs. Estimating the MSY itself is already a complex task, see, e.g., Tsikliras and 
Froese (2019) and references therein. An alternative solution is to fix the TAC below MSY. 
However, not exploiting fisheries resources at MSY leads to the loss of production and rents 
from the fisheries and, as shown here, it only addresses the issue of overfishing partially.

An ineffective system of sanctions can hinder sustainability by failing to deter quota 
violations, even when the risk of punishment is certain. Even with strong enforcement, 
overexploitation can occur if the penalties do not account for the strong incentive to deviate 
when natural resources are abundant. Implementing a dynamic fine system could address 
this issue, but it may be challenging for resource managers to predict and account for the 
potential profits from overexploitation in advance.

In conclusion, an IT fishing control system addresses the challenge of enforcing con-
trols and regulations through a comprehensive monitoring system. However, it does not 
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resolve the issues of overfishing and illegal catch of fish from a stock that is well within 
safe biological limits. The findings from the dynamic model suggest potential policy 
indications to tackle these issues. These include implementing a system where both 
TAC and penalties are determined dynamically to anticipate fish depletion and fishers’ 
profits.22

The findings from this study add to the existing economic literature on law enforcement 
in fisheries. However, the results are obtained using a basic, although largely adopted, bio-
logical model based on logistic growth. In our dynamic analysis, we focused on the primary 
benchmark cases that utilize deterministic enforcement mechanisms. This approach enabled 
us to thoroughly explore the implications and outcomes associated with this specific type 
of enforcement. Given the contextual framework of our analysis, we chose to set aside the 
case of probabilistic enforcement, which we intend to study separately in a future work. 
There are additional complexities to consider when dealing with a quota-regulated CPR 
with biologically interacting fish species. Management of many fisheries in the EU is based 
on assessing the stocks of individual species, even though most species are caught together 
with others. In multi-species assessments, the MSY reference point based on a single spe-
cies often does not hold, and so the catch recommendations, see, e.g., Legović et al. (2010) 
and Guillen et al. (2013). In cases of predator-prey interaction, setting the maximum sus-
tainable catch based on different MSYs for the prey and predator could lead to the extinc-
tion of the predator, as indicated in various studies, see, e.g., Kar and Legovic (2014) and 
references therein. These issues indicate the need for a more complex system to dynamically 
set quotas and punishments, taking into account biological interactions and their impact on 
total harvesting and profits.

Appendix A. A Robustness Check of Fishing Quota System: (vi) Full 
Compliance at Partial MSY

In this Appendix, we consider the resource growth model (21) in case of partial MSY har-
vesting, that is 0 < η < 1. The aim is to investigate the global dynamics of this model to 
determine if setting a quota at a fraction of the MSY can solve some of the issues related to 
overexploitation and extinction that arise from fishing at the MSY. Similar to the approach 
in Sect. 4.2, we assume full compliance with the fishing quota system. We will begin by 
extending the results of Proposition 5 to the case of η < 1. The proof of the following propo-
sition is in Appendix 2.

Proposition 7 (Full compliance with quotas at partial MSY). Consider the fishery growth map 
with harvesting at fishing quotas as in (21), with 0 < a < ψ and 0 < η < 1. Consider X̄CN

1,2  
and X̄MSY

1,2  defined in Proposition 4. Define the following growth rate thresholds r̃1 and r̃2: 

 
r̃1 := 2a (1 −

√
1 − η)

ηψ
<

2a (1 +
√

1 − η)
ηψ

:= r̃2. (28)

22 In environmental economics contexts, e.g., on greenhouse gas emission regulation problems, there is some 
existing work with dynamic regulation using discrete-time modeling, see for example Buccella et al. (2024).
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The following dynamic scenarios occur:

(A) For 0 < r < a
ψ , the extinction equilibrium X̄CN

1  is asymptotically stable, X̄CN
2  

is not an equilibrium of the model, equilibrium X̄MSY
1  is unstable while the equi-

librium of partial MSY, X̄MSY
2 , is asymptotically stable with basin of attraction 

B
(
X̄MSY

2
)

=
(

X̄MSY
1 ,

K(2+r(1+
√

1−η))
2r

]
, all the other orbits converge to X̄CN

1 ;

(B) At r = a
ψ , a transcritical bifurcation occurs at which X̄CN

1  and X̄CN
2  merge, the global 

dynamics of the model is as in point (i);
(C) For a

ψ < r < r̃1, X̄CN
1 , X̄CN

2 , X̄MSY
1  and X̄MSY

2  are equilibria of the 

model, X̄CN
1  and X̄MSY

1  are unstable, X̄MSY
2  and X̄CN

2  are asymptotically  

stable with basins of attraction B
(
X̄MSY

2
)

=
(

X̄MSY
1 ,

K(2+r(1+
√

1−η))
2r

]
 and 

B
(
X̄CN

2
)

=
(
0, X̄MSY

1
)

∪
(

K(2+r(1+
√

1−η))
2r ,

K
(

1+r+
√

1+r(2+r(1−η))
)

2r

)
, 

respectively;

(D) At r = r̃1, X̄CN
2  and X̄MSY

1  merge and collide with the kink point X̃;
(E) For r̃1 < r < r̃2, X̄CN

1  and X̄MSY
2  are the only equilibria, X̄CN

1  is unstable, while 
X̄MSY

2  is asymptotically stable for r < 2√
1−η

, undergoes a flip bifurcation at r = 2√
1−η

 
and it is unstable for r > 2√

1−η
;

(F) At r = r̃2, equilibria X̄CN
2  and X̄MSY

2  merge and collide with the kink point X̃ , for 
r > r̃2, X̄CN

2  becomes again feasible (real) while X̄MSY
2  becomes unfeasible (virtual);

(G) For r̃2 < r < 2 + a
ψ , equilibrium X̄CN

2  is asymptotically stable with basin of attraction

 
B

(
X̄CN

2
)

=


0, max


K

1 + r − a
ψ

r
,

K
(

1 + r +
√

1 + r (2 + r (1 − η))
)

2r





 ; (29)

(H) At r = 2 + a
ψ , equilibrium X̄CN

2  loses stability through a flip (period-doubling) 
bifurcation;

(I) For 2 + a
ψ < r ≤ 3 + a

ψ , equilibria X̄CN
1,2  are unstable and orbits in (

0, max
{

K(1+r− a
ψ )

r ;
K

(
1+r+

√
1+r(2+r(1−η))

)
2r

})
, except for X̄CN

2 , are attracted 

to either periodic or chaotic attractors;

(J) For r > 3 + a
ψ , resource extinction occurs in finite time.

The results in Proposition 7 indicate that fixing a quota at a fraction η ∈ (0, 1) of the MSY 
leads to the equilibrium of partial MSY being asymptotically stable. On the other hand, the 
equilibrium of MSY is asymptotically stable only on the right-hand side as shown in Propo-
sition 5. Moreover, the basin of attraction of the equilibrium of partial MSY includes the 
basin of attraction of the equilibrium of MSY. Therefore, by harvesting only a fraction of the 
MSY, the risk of extinction associated with maximum sustainable catch is reduced. These 

1 3



Benefits and Perils of Integrated Data Systems in Managing Sustainable…

advantages are inherited from the fishing quota system. When the quota is fixed as a fraction 
of the MSY under full compliance, we observe an increase in the basin of attraction of the 
non-over-exploitation equilibrium. This is observable in the results of Proposition 7 and in 
the numerical examples of Figs. A.9 and A.10.

The numerical example of Fig. A.9 is obtained using the same parameters and the same 
map as in Fig. 1(c), but with partial MSY instead of MSY, which means assuming η < 1 
instead of η = 1. Comparing Fig. A.9(a) obtained with η = 0.9 with Fig. 1(c), we observe 
that in Fig. A.9(a) the level of harvesting is reduced and the equilibrium of MSY, X̄MSY ,  
is substituted with the equilibrium of partial MSY, X̄MSY

2 . This equilibrium implies less 
harvesting and is asymptotically stable, while X̄MSY  is only asymptotically stable on the 
right-hand side. Moreover, the basin of attraction of X̄MSY  is a subset of the one of X̄MSY

2 .  
Hence, negative shocks at the equilibrium of partial MSY may be absorbed and extinc-
tion avoided. Nevertheless, orbits leading to extinction still exist, see the magenta and 
cyan trajectories in Fig. A.9(a). Reducing η, e.g. η = 0.75, the basin of attraction of X̄MSY

2  
increases further and the magenta trajectory does not lead to extinction anymore, as shown 
in Fig. A.9(b). Further reduction of η, e.g. η = 0.5, results in the cyan trajectory not leading 
to extinction anymore as it is absorbed by the basin of attraction of X̄MSY

2  that is further 
increased, see Fig. A.9(c).

Another issue related to the fishing quota system with quota fixed at the MSY is the coex-
istence of the equilibrium of MSY with an equilibrium of overexploitation. It is the case of 
Fig. 2(c), where the fishing quota system only partially reduces the risk of overexploitation. 
To further attenuate this risk, we can set the quota to a fraction of the MSY as indicated by 
the results of Proposition 7 and by Fig. A.10. Figure A.10 is obtained by applying the same 
map and the same parameters as in Fig. 2(c) but fixing the quota at a fraction η, lower than 
one, of the MSY. Comparing Fig. A.10(a), where η = 0.9, with Fig. 2(c), we observe that the 
stable equilibrium of partial MSY, X̄MSY

2 , substitutes the right-hand (only) stable equilib-
rium of MSY, X̄MSY . We also observe that the basin of attraction of X̄MSY

2  includes the 
one of X̄MSY . Nevertheless, orbits converging to an equilibrium of overexploitation per-
sist, see, e.g., the magenta and cyan trajectories in Fig. A.10(a). The risk of overexploitation 
decreases as we reduce η, e.g., in Fig. A.10(b) where η = 0.75, we observe that the basin of 
attraction of X̄MSY

2  is larger and the magenta trajectory does not lead anymore to an equi-
librium of overexploitation. Further reducing η, e.g. η = 0.5, eliminates the equilibrium of 
overexploitation, and the equilibrium of partial MSY, X̄MSY

2 , remains the only stable equi-

Fig. A.9 Growth under map (8) with harvesting: Panel (a) η = 0.9; Panel (b) η = 0.75; Panel (c) η = 0.5. The 
dashed line represents biomass X, and the solid black line is harvesting. Staircase diagram of the trajec-
tory starting at X0 = 1.2 is in magenta. Staircase diagram of the trajectory starting at X0 = 5 is in brown. 
Staircase diagram of the trajectory starting at X0 = 9 is in cyan. Equilibria are intersections between the 
curve of growth and the dashed line and are spotted by a black dot. Remaining parameters as in Fig. 1
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librium. It is the case of Fig. A.10(c), where even the cyan trajectory converges to X̄MSY
2 . 

In this case, the risk of extinction is limited to natural extinction due to overcrowding.

Appendix B. Technical Proofs

Proof of Property 1. By definition qCN (X) ≥ qQ (X). Then, properties (A) and (B) fol-
low from Assumption 1(C). From Assumption 1(A) and 1(B) and from the Weierstrass 
Theorem, we have that a function f exists such that f (q2; X) is the best-reply to q2. More-
over, by Assumptions 1(A) and by Fermat’s Theorem (on stationary points) we have that 
f (q2; X) has to be the implicit solution of the equation ∂π1

∂q1
(f (q2; X) , q2; X) = 0, while 

by Assumptions 1(A) and 1(B) and by the Implicit Function Theorem, we have that

 

∂f

∂q2
(q2; X) = −

∂2π1
∂q1∂q2

(f (q2; X) , q2; X)
∂2π1
∂q2

1
(f (q2; X) , q2; X)

. (30)

By Assumption 1(B), the denominator of the right-hand-side of (30) is negative while by 
Assumption 1(C) the numerator of the right-hand-side of (30) is non-positive. It follows 
that f is decreasing. Then, f

(
qQ (X) ; X

)
≥ f

(
qCN (X) ; X

)
 since qCN (X) ≥ qQ (X) . 

Moreover, qCN (X) = f
(
qCN (X) ; X

)
 from the definition of Cournot-Nash equilib-

rium. Hence, f
(
qQ (X) ; X

)
≥ qCN (X) ≥ qQ (X). It follows that ∃γ ∈ (0, 1) such that 

qCN (X) = γf
(
qQ (X) ; X

)
+ (1 − γ) qQ (X). From Assumption 1(B), we have that: 

 π
(
qCN , qQ; X

)
≥ γπ

(
f

(
qQ (X) ; X

)
, qQ; X

)
+ (1 − γ) π

(
qQ, qQ; X

)
. (31)

By definition of f we have that π
(
f

(
qQ (X) ; X

)
, qQ; X

)
≥ π

(
q, qQ; X

)
 for all q. 

Then, property (C) follows from inequality (32). Property (D) follows by noting that 
π

(
qCN (X) , qCN (X) ; X

)
≥ π

(
qQ (X) , qCN (X) ; X

)
 by definition of Cournot-

Nash equilibrium and π
(
qCN (X) , qCN (X) ; X

)
> π

(
qQ (X) , qCN (X) ; X

)
 when 

Fig. A.10 Growth under map (8) with harvesting: Panel (a) η = 0.9; Panel (b) η = 0.75; Panel (c) η = 0.5. 
The dashed line represents biomass X, and the solid black line is harvesting. Staircase diagram of the 
trajectory starting at X0 = 1.2 is in magenta. Staircase diagram of the trajectory starting at X0 = 5 is in 
brown. Staircase diagram of the trajectory starting at X0 = 7.9 is in cyan. Equilibria are intersections 
between the curve of growth and the dashed line and are spotted by a black dot. Remaining parameters 
as in Fig. 2
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qCN (X) ̸= qQ (X) by Assumption 1(B) of strictly concavity. Finally, Property (E) follows 
from Properties (A) and (C).

Proof of Proposition 1. Setting µ = 0, the game becomes

where we have dropped the dependence on X of qQ, qCN and π for the sake of notation sim-
plicity and without loss of generality. Being qCN the harvesting at the Cournot-Nash equilib-
rium, we have that 

(
qCN , qCN

)
 is always a Nash equilibrium of the game. By definition of 

Nash equilibrium, 
(
qQ, qQ

)
 is a Nash equilibrium if and only if π

(
qQ, qQ

)
= π

(
qCN , qQ

)
. 

By Property 1-(C), this implies qCN = qQ. The remaining part of the proposition follows 
from the definition of the prisoner’s delight (dilemma) game.

 
Proof of Proposition 2. By assumption, 1 ≥ λ2 > λ1 ≥ 0, µ ≥ 0 and the game is symmet-
ric. Therefore, the game becomes

where we have dropped the dependence on X of qQ, qCN and π for the sake of notation sim-
plicity and without loss of generality. By definition of Nash equilibrium, 

(
qQ, qQ

)
 is a Nash 

equilibrium if and only if 

 λ1µ ≥ π
(
qCN , qQ

)
− π

(
qQ, qQ

)
= µ1; (32)

(
qCN , qCN

)
 is a Nash equilibrium if and only if 

 λ2µ ≤ π
(
qCN , qCN

)
− π

(
qQ, qCN

)
= µ2; (33)

(
qCN , qQ

)
 is a Nash equilibrium if and only if 

 µ2 = π
(
qCN , qCN

)
− π

(
qQ, qCN

)
≤ λ2µ and λ1µ ≤ π

(
qCN , qQ

)
− π

(
qQ, qQ

)
= µ1. (34)

Since the game is symmetric, 
(
qQ, qCN

)
 is a Nash equilibrium if and only if 

(
qCN , qQ

)
 is 

a Nash equilibrium. Moreover, 

 µ ≷ µ3 ⇔ π
(
qQ, qQ

)
≷ π

(
qCN , qCN

)
− λ2µ. (35)
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It follows that 
(
qCN , qCN

)
 is more (less) profitable than 

(
qQ, qQ

)
 when λ2µ < µ3 

(λ2µ > µ3). By Property 1, we have that 

 π
(
qCN , qQ

)
> π

(
qQ, qQ

)
and π

(
qCN , qCN

)
> π

(
qQ, qCN

)
. (36)

Therefore, µ1, µ2 > 0. This completes the proof.
 
Proof of Proposition 3. By assumption, λ = 1, µ ≥ 0 and the game is symmetric. Therefore, 
the game becomes

where we have dropped the dependence on X of qQ, qCN and π for the sake of notation sim-
plicity and without loss of generality. By definition of Nash equilibrium, 

(
qQ, qQ

)
 is a Nash 

equilibrium if and only if 

 µ ≥ π
(
qCN , qQ

)
− π

(
qQ, qQ

)
= µ1; (37)

(
qCN , qCN

)
 is a Nash equilibrium if and only if 

 µ ≤ π
(
qCN , qCN

)
− π

(
qQ, qCN

)
= µ2; (38)

(
qCN , qQ

)
 is a Nash equilibrium if and only if 

 µ2 = π
(
qCN , qCN

)
− π

(
qQ, qCN

)
≤ µ ≤ π

(
qCN , qQ

)
− π

(
qQ, qQ

)
= µ1. (39)

Since the game is symmetric, 
(
qQ, qCN

)
 is a Nash equilibrium if and only if 

(
qCN , qQ

)
 is 

a Nash equilibrium. Moreover, 

 µ ≷ µ3 ⇔ π
(
qQ, qQ

)
≷ π

(
qCN , qCN

)
− µ. (40)

It follows that 
(
qCN , qCN

)
 is more (less) profitable than 

(
qQ, qQ

)
 when µ < µ3 (µ > µ3).  

By property 1, we have that 

 π
(
qCN , qQ

)
> π

(
qQ, qQ

)
and π

(
qCN , qCN

)
> π

(
qQ, qCN

)
. (41)

Therefore, µ1, µ2 > 0. This completes the proof.
 
Proof of Proposition 4. Let us recall the global dynamics of the standard logistic map 
xt+1 = r̂xt (1 − xt), see, e.g., Feigenbaum (1978), Devaney (1989), Phatak and Suresh Rao 
(1995) and Murray (2003). It is well-known that this map has two equilibria for r̂ > 0, that 
is, x1 = 0 and x2 = 1 − 1/r̂. For r̂ ∈ (0, 1), x2 is unstable, x1 = 0 is asymptotically stable, 
with B (x1) = (x2, 1/r̂) and outside [x2, 1/r̂] orbits are attracted to −∞. For r̂ = 1, we have 

1 3



Benefits and Perils of Integrated Data Systems in Managing Sustainable…

a transcritical bifurcation, with the two equilibria that merge in zero, that is x1 = x2 = 0.  
Moreover, B (0) = [0, 1], outside B (0) orbits are attracted to −∞. For r̂ ∈ (1, 3), x1 is 
unstable, x2 is asymptotically stable with B (x2) = (0, 1). Orbits outside [0, 1] are attracted 
to −∞. At r̂ = 3, the equilibrium x2 undergoes a flip (or period-doubling) bifurcation and a 
stable 2-cycle appears and persists stable for r̂ ∈

(
3, 1 +

√
6
)
. At r̂ = 1 +

√
6, the 2-cycle 

undergoes a period-doubling bifurcation itself becoming unstable and a stable 4-cycle 
appears. By further increasing ̂r, cycles of period 2, 4, 8, 16, . . . , 2k, 2k+1, . . . appear through 
a so-called cascade of period-doubling bifurcations. These cycles are stable when appear 
through a period-doubling bifurcation and become unstable (but persist) at the next period-
doubling bifurcation. For r̂ = r̂∞ ≈ 3.56994, so-called Feigenbaum point, all the infinite 
2k-cycles are originated and are now unstable. For r̂ ∈ (r̂∞, 4), all trajectories are chaotic. 
At r̂ = 4, a final bifurcation occurs with aperiodic (chaotic) trajectories. For r̂ > 4, almost 
all trajectories diverge to −∞. Defining x = X r

K(1+r) , the map in (8) with H (X) = 0 
becomes the standard logistic map xt+1 = xtr̂ (1 − xt), where r̂ = 1 + r. Hence, point 
(i) follows. Regarding the map with MSY harvesting, let us operate the change of variable 
Y = X − b, where b = K (1 −

√
1 − η) /2. Then, we obtain a map that is equivalent to 

map (8) where H (X) = 0, parameter r is substituted with parameter r̄ = r
√

1 − η and 
parameter K is replaced with parameter K̄ = K

√
1 − η. Hence, Point (ii) follows. Define 

r̃ = r − a
ψ  and K̃ = Kr̃

r . Map (8) with Cournot-Nash harvesting can be rewritten as a map 
without harvesting, with rescaled growth rate r̃ and carrying capacity K̃. Hence, Point (iii) 
follows.

 
Proof of Corollary 1. For a > rψ, note that: 

 
X̄MSY

2 = K

2

(
1 +

√
1 − η

)
< X̄CN

2 = K

(
1 − a

rψ

)
⇔ rψ

(1 +
√

1 − η)
2

> a. (42)

Moreover, by Proposition 4 we have that 

 
B

(
X̄CN

2
)

=
(

0, K
1 + r − a

ψ

r

)
and B

(
X̄MSY

2
)

=
(

X̄MSY
1 , K

2 + r (1+
√

1 − η)
2r

)
. (43)

Since X̄MSY
1 > 0 for all r > 0, B

(
X̄CN

2
)

⊂ B
(
X̄MSY

2
)
 is not possible while we have that 

B
(
X̄MSY

2
)

⊂ B
(
X̄CN

2
)
 when 

 
K

1 + r − a
ψ

r
> K

2 + r (1+
√

1 − η)
2r

 (44)

that is, if and only if a < ã.
 
Proof of Proposition 5. Let us start by noting that the piecewise-smooth map (21) is the 
logistic map (8) with Cournot-Nash harvesting for X < X̃  and the logistic map (8) with 
MSY harvesting (η = 1) for X < X̃ . Therefore, by Proposition 4, the possible equilibria 

are X̄CN
1 = 0 and X̄CN

2 = K
(

1 − a
rψ

)
 as long as they are in the region X < X̃  and 

X̄MSY = K
2  as long as it is in the region X > X̃ . If X̄CN

1 < X̃ , we say that it is feasible 
(otherwise virtual). The same for X̄CN

2 . If X̄MSY > X̃ , we say that this equilibrium is 
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feasible (otherwise virtual). As long as an equilibrium is feasible, and it is not a kink point, 
its local stability properties and bifurcations are the same as those described in Proposi-
tion 4. Regarding its basins of attraction, as long as it is contained in its own region of 
feasibility it is the same as in Proposition 4 with the addition of all its eventual preimages, 
otherwise it will be determined by analytical considerations in the following of this proof. 
If an equilibrium is virtual, then it does not exist and orbits cannot end up in it. For these 
standard properties of piecewise-smooth one-dimensional map we refer to Avrutin et al. 
(2019). Consider the case 0 < r < a

ψ . Then, X̄MSY  is feasible and B
(
X̄MSY

)
, determined 

using map (8) with MSY harvesting (η = 1), is inside the region where this equilibrium 
is feasible (X > X̃). All the other orbits in X > X̃  converge in a finite number of itera-
tions in the region X < X̄MSY , where there is monotonic convergence to −∞ if the map 
(8) with MSY harvesting (η = 1) applies. Therefore, all these orbits enter in a finite num-
ber of iterations the region X < X̃ , where map (8) with Cournot-Nash harvesting applies 
and where there is monotonic convergence to X̄CN

1 . It follows that all trajectories outside 
B

(
X̄MSY

)
 are attracted to X̄CN

1 . This completes the proof of Proposition 5-(A). At r = a
ψ  

the same conditions that characterize Proposition 5-(A) are satisfied with the only nov-
elty that X̄CN

1 = X̄CN
2 . The merging of the two equilibria occurs inside the region where 

the logistic map (8) with Cournot-Nash harvesting applies. Hence, as stated in Proposition 
4-(C) the merging occurs because of a transcritical bifurcation, which proves Proposition 
5-(B). For a

ψ < r < 2a
ψ , we have that equilibria X̄CN

1,2  and X̄MSY  are all feasible and are 
not a kink point, therefore their local stability properties in Proposition 4 applies. More-

over, according to Proposition 4, we have that B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
 which is 

contained in the region where the map (8) with MSY harvesting (η = 1) apply. Moreover, 

in 
(
X̃, X̄MSY

)
∪

(
K(2+r)

2r ,
K(1+r+

√
1+2r)

2r

)
 we have that map (8) with MSY harvesting 

(η = 1) applies, is always positive and, by Proposition 4, all orbits are attracted to −∞ if 
map (8) with MSY harvesting (η = 1) applied everywhere. Therefore, any of these orbits 
enter 

(
0, X̃

)
 in a finite number of iterations. There, map (8) with Cournot-Nash harvest-

ing applies and is always increasing for a
ψ < r < 2a

ψ . Indeed, it is a concave parabola with 

positive derivative in X̃ , which is given by 1 + r − r2ψ
2a − a

ψ . Set z = a/ψ, the derivative 
can be rewritten as 2z + 2zr − r2 − 2z2. Hence it is a parabola in r. Moreover, in r = z it 
values z (2 − z). Therefore it is positive for z < 2, and in r = 2z it values 2z (1 − z), hence 
positive for z < 1. This implies that it is positive for all r ∈ (z, 2z) as long as z < 1. Since 
z < 1 by assumption, for r ∈ (z, 2z) we have that the derivative of the map (8) with Cournot-
Nash harvesting is positive in X̃ . Then, orbits are monotonic in 

(
0, X̃

)
, and by Proposi-

tion 4 these orbits are attracted to X̄CN
2 . This proves Proposition 5-(C). At r = 2a/ψ, it 

is X̄MSY = X̄CN
2 = X̃ , whence the kink point X̃  is also an equilibrium and attracts all 

orbits that X̄MSY  and X̄CN
2  attract. This proves Proposition 5-(D). For r > 2a/ψ, we have 

always X̄CN
1,2 < X̃  and by Proposition 4 X̄CN

1  is unstable while X̄CN
2  is asymptotically 

stable. Moreover, for 2a
ψ < r < 2 + a

ψ , we have that X̄MSY < X̃ . Therefore, X̄MSY  is not 
a feasible equilibrium of the model. This proves Proposition 5-(E) except for the basin of 
attraction of X̄CN

2  when r ≥ 2a
ψ + 2

√
a
ψ . At r = 2a

ψ + 2
√

a
ψ , we have that the kink point 

X̃  is also the point K 1+r− a
ψ

r  at which the concave parabola representing the map (8) with 
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Cournot-Nash harvesting values zero. Therefore, 
(

0, K
1+r− a

ψ

r

)
 is an invariant set where 

the dynamics is given by the smooth map (8) with Cournot-Nash harvesting and any point 
inside this region does not have any preimages outside, where the map takes either zero or 
negative values. The same applies for r > 2a

ψ + 2
√

a
ψ . The results of Proposition 4-(C) in 

this invariant set are then valid. Indeed, two maps that are equal in a subset (interval) S of 
their state space, which is also a (forward) invariant set (S is a (forward) invariant set for 
a map when xt ∈ S  implies xt+1 ∈ S for all t ∈ N), have in S the same dynamics. This 
proves the remaining part of Proposition 5-(E) and proves Proposition 5-(F), (G), (H).

 
Proof of Proposition 6. Note that for X ≤ X+, map (25) coincides with map (21), therefore 
equilibria and their stability are as in Proposition 5. Moreover, for X > X+ map (25) is the 
same as map (8) with Cournot-Nash harvesting, then equilibria and their stability are as in 
Proposition 4-(iii). It follows that the only element to verify to complete the investigation 
of the equilibria is their feasibility. Differently from Proposition 5, we have that X̄CN

2  is 
feasible even when X̄CN

2 > X+ while X̄MSY  is not feasible when X̄MSY > X+. Note 
that, X̄MSY > X+ if and only if 

 
(
ψaKr + 8ψµ − 2a2K

)2
> 16aKrµψ2 + 64µ2ψ2 and ψaKr + 8ψµ − 2a2K < 0, (45)

which is equivalent to condition 

 
µ < min

{
K(2a − rψ)2

32ψ
; aK

2a − ψr

8ψ

}
. (46)

Note that K(2a−ψr)2

32ψ < aK 2a−ψr
8ψ  for r < 2a/ψ and K(2a−ψr)2

32ψ = aK 2a−ψr
8ψ = 0 for 

r = 2a/ψ and aK 2a−ψr
8ψ < 0 for r > 2a/ψ. Hence, for r > 2a/ψ, it always holds 

that X̄MSY < X+, while for r < 2a/ψ we have X̄MSY < X+ for µ < µ̃. Note that 
X̄CN

2 > X+ if and only if 

 8aKrψ2 (
8a2 − 8arψ − ψ2r2)

µ > K2a2 (
−16a2r2ψ2 − 16a4 − ψ4r4 + 32a3rψ + 8ar2ψ2 (rψ − 1)

)
 (47)

and 4a2K(rψ−a)−aKr2ψ2

8rψ2 > µ. The term 4a2K(rψ−a)−aKr2ψ2

8rψ2  is never positive and values 
0 only for r = 2a/ψ. Hence, X̄CN

2 > X+ is never possible. Regarding the basin of attrac-
tion, as we know from Proposition 4-(ii), harvesting always the quota (dynamical system (8) 

with MSY) we have B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
. Moreover, for X < X+ map (25) 

is the same as map (21). Then, from Proposition 5, we know that there are not other points 
in the region X < X+ that belongs to the basin of attraction of X̄MSY  except for those in [
X̄MSY , K(2+r)

2r

]
. By definition of map (25), we also have that for X > X+ fishers do not 

comply with the regulation, therefore they harvest an amount larger than the quota. Then, 
each X that is greater than X+ is mapped into a point that is lower than the point at which the 
same X is mapped by dynamical system (8) with MSY. It follows that, either X+ > K(2+r)

2r  

and B
(
X̄MSY

)
=

[
X̄MSY , K(2+r)

2r

]
 or the basin of attraction of X̄MSY  is a subset of [

X̄MSY , K(2+r)
2r

]
. Note that X+ < K(2+r)

2r  if and only if µ < µ̂. To complete the proof 
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note that for r ≥ 2a
ψ + 2

√
a
ψ , in any point in which the map (25) is positive, we have that it 

is equivalent to map (21). Therefore, the same results as in Proposition 5 apply.
 
Proof of Proposition 7. Note that X̄MSY

1 < X̃  if and only if a
ψ

1−
√

1−η
η < r, 

X̄MSY
2 > X̄MSY

1  and 1−
√

1−η
η > 1 since η ∈ (0, 1) by assumption. Therefore, X̄MSY

1,2  are 
feasible 

(
> X̃

)
 for r < a

ψ . The remaining parts of Proposition 7-(A) follow from Proposi-
tion 5-(A) and Proposition 4. Note that η impacts only on map (8) with MSY harvesting. 
Therefore, Proposition 7-(B) follows from Proposition 5-(B). For a

ψ < r < r̃1, we have 
X̄CN

1 < X̄CN
2 < X̃ < X̄MSY

1 < X̄MSY
2 . Then, all four equilibria are feasible and their 

local stability follows from Proposition 4. Moreover, note that all points in the interval 
B

(
X̄MSY

2
)
 are greater than X̃ , therefore B

(
X̄MSY

2
)
 is basin of attraction of X̄MSY

2 , as 
it follows from Proposition 4 and by noting that B

(
X̄MSY

2
)
 does not have preimages. The 

basin of attraction of X̄CN
2  follows by noting that (for a/ψ < r < r̃1) all points in the region 

where the map is positive and outside B
(
X̄MSY

2
)
 remain positive forever when iterated. 

Then, they must converge to an attractor. Then, they either converge to the stable equilib-
rium X̄CN

2  or to a periodic or chaotic attractor. However, the presence of periodic or chaotic 
attractors implies that a point greater than X̃  has preimages in the region 

(
0, X̃

)
. This is not 

possible as the map in 
(
0, X̃

)
 is increasing (as already shown in the proof of Proposition 

5) with trajectories that monotonically converge to X̄CN
2 . Then, they converge to X̄CN

2 . 
This completes the proof of Proposition 7-(C). For r = r̃1, we have X̄CN

2 = X̃ = X̄MSY
1 , 

which proves Proposition 7-(D). For r̃1 < r < r̃2 note that X̄CN
2 > X̃ > X̄MSY

1 , while 
X̄MSY

2 > X̃ . Therefore, equilibria are X̄MSY
2  and X̄CN

1  and Proposition 7-(E) follows 
from Proposition 4. For r = r̃2, we have X̄MSY

2 = X̃ = X̄CN
2 , while for r > r̃2, we have 

X̄MSY
2 , X̄CN

2 < X̃ . Therefore, X̄MSY
1 < X̃  and X̄MSY

1,2  are not feasible while X̄CN
2  is 

feasible. This proves Proposition 7-(F), while Proposition 7-(G), (H), (I) and (L) follows 
from Proposition 4 except for the basins of attraction. Regarding the basin of attraction of 
X̄CN

2  in Proposition 7-(G), it follows by noting that a point where the map is positive is still 
mapped to a point where the map is positive and by noting that in the region where the map 
is positive, there is only one invariant set, which is the stable equilibrium X̄CN

2 . Regarding 
the basin of attraction of periodic or chaotic attractors in Proposition 7-(I), the claim follows 
by noting that a point where the map is positive is still mapped to a point where the map is 
positive and by noting that in the region where the map is positive there is only an unstable 
equilibrium X̄CN

2 , therefore all the other points must converge to some periodic or chaotic 
attractor.

Appendix C. Derivation of the Harvesting Function in Case of Partial 
Compliant Strategy

Consider the harvesting function (24). According to the fishery setup of Sect. 4, we have 
that: 

 
π

(
qCN (X) , qCN (X) ; X

)
= π

(
qCN (X) , qQ (X) ; X

)
= a2X

4ψ
 (48)
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and 

 
π

(
qQ (X) , qQ (X) ; X

)
= π

(
qQ (X) , qCN (X) ; X

)
=




a2X
4ψ if aX

2ψ < ηKr
8

(
a − ηKrψ

8X

)
ηKr

8 if aX
2ψ > ηKr

8

. (49)

Hence, 

 

µ1 = µ2 =




0 if aX
2ψ < ηKr

8

a2X
4ψ −

(
a − ηKrψ

8X

)
ηKr

8 if aX
2ψ > ηKr

8

 (50)

and the harvesting function (24) can be rewritten as 

 

H (X) =




2qQ (X) if µ > a2X
4ψ −

(
a − ηKrψ

8X

)
ηKr

8 and aX
2ψ > ηKr

8

2qCN (X) otherwise
 (51)

where 2qQ (X) = ηKr
4  and 2qCN (X) = aX

ψ . Moreover, note that 

µ > a2X
4ψ −

(
a − ηKrψ

8X

)
ηKr

8  if and only if X− < X < X+, where 

 
X± =

ψ (aKrη + 8µ) ± ψ

√
(aKrη + 8µ)2 − a2K2r2η2

4a2 .
 (52)

Note that X− < ηKrψ
4a := X̃ < X+. Hence, the harvesting function (24) can be rewrit-

ten as 

 

H (X) =




ηKr
4 if X̃ < X < X+

aX
ψ otherwise

. (53)

Plugging the harvesting function (53) in the dynamics framework for the evolution of the 
biomass given by (8), we obtain map (25).

As a remark, note that X− = ηKrψ
4a := X̃ = X+ and 2qQ (X+) = 2qCN (X+) = ηKr

4  
when µ = 0. Hence, for µ = 0 the harvesting function (53) reduces to 2qCN (X) and map (25) 
becomes the map (8) with Cournot-Nash harvesting.
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